tf_lstm_pre.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_pre.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import logging, argparse, traceback
  11. from common.database_dml_koi import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. model_lock = Lock()
  17. from itertools import chain
  18. from common.logs import Log
  19. from tf_lstm import TSHandler
  20. # logger = Log('tf_bp').logger()
  21. logger = Log('tf_ts').logger
  22. np.random.seed(42) # NumPy随机种子
  23. # tf.set_random_seed(42) # TensorFlow随机种子
  24. app = Flask('tf_lstm_pre——service')
  25. with app.app_context():
  26. current_dir = os.path.dirname(os.path.abspath(__file__))
  27. with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
  28. args = yaml.safe_load(f)
  29. dh = DataHandler(logger, args)
  30. ts = TSHandler(logger, args)
  31. @app.before_request
  32. def update_config():
  33. # ------------ 整理参数,整合请求参数 ------------
  34. args_dict = request.values.to_dict()
  35. args_dict['features'] = args_dict['features'].split(',')
  36. args.update(args_dict)
  37. opt = argparse.Namespace(**args)
  38. dh.opt = opt
  39. ts.opt = opt
  40. g.opt = opt
  41. logger.info(args)
  42. @app.route('/nn_lstm_predict', methods=['POST'])
  43. def model_prediction_bp():
  44. # 获取程序开始时间
  45. start_time = time.time()
  46. result = {}
  47. success = 0
  48. print("Program starts execution!")
  49. try:
  50. pre_data = get_data_from_mongo(args)
  51. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  52. scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
  53. ts.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
  54. ts.get_model(args)
  55. res = list(chain.from_iterable(target_scaler.inverse_transform(ts.predict(scaled_pre_x))))
  56. pre_data['farm_id'] = args.get('farm_id', 'null')
  57. if args.get('algorithm_test', 0):
  58. pre_data[args['model_name']] = res[:len(pre_data)]
  59. pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
  60. pre_data = pre_data[['dateTime', 'farm_id', args['target'], args['model_name'], 'dq']]
  61. pre_data = pre_data.melt(id_vars=['dateTime', 'farm_id', args['target']], var_name='model', value_name='power_forecast')
  62. res_cols = ['dateTime', 'power_forecast', 'farm_id', args['target'], 'model']
  63. if 'howLongAgo' in args:
  64. pre_data['howLongAgo'] = int(args['howLongAgo'])
  65. res_cols += ['howLongAgo']
  66. else:
  67. pre_data['cdq'] = args.get('cdq', 1)
  68. pre_data['dq'] = args.get('dq', 1)
  69. pre_data['zq'] = args.get('zq', 1)
  70. pre_data['power_forecast'] = res[:len(pre_data)]
  71. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  72. res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
  73. pre_data = pre_data[res_cols]
  74. pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  75. pre_data.loc[pre_data['power_forecast'] > args['cap'], 'power_forecast'] = args['cap']
  76. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  77. insert_data_into_mongo(pre_data, args)
  78. success = 1
  79. except Exception as e:
  80. my_exception = traceback.format_exc()
  81. my_exception.replace("\n", "\t")
  82. result['msg'] = my_exception
  83. end_time = time.time()
  84. result['success'] = success
  85. result['args'] = args
  86. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  87. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  88. print("Program execution ends!")
  89. return result
  90. if __name__ == "__main__":
  91. print("Program starts execution!")
  92. from waitress import serve
  93. serve(app, host="0.0.0.0", port=10114)
  94. print("server start!")
  95. # ------------------------测试代码------------------------
  96. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  97. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  98. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  99. # args_dict['features'] = args_dict['features'].split(',')
  100. # arguments.update(args_dict)
  101. # dh = DataHandler(logger, arguments)
  102. # ts = TSHandler(logger)
  103. # opt = argparse.Namespace(**arguments)
  104. #
  105. # opt.Model['input_size'] = len(opt.features)
  106. # pre_data = get_data_from_mongo(args_dict)
  107. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  108. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
  109. # ts.get_model(arguments)
  110. # result = ts.predict(pre_x)
  111. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  112. # pre_data['power_forecast'] = result1[:len(pre_data)]
  113. # pre_data['farm_id'] = 'J00083'
  114. # pre_data['cdq'] = 1
  115. # pre_data['dq'] = 1
  116. # pre_data['zq'] = 1
  117. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  118. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  119. #
  120. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  121. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  122. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  123. #
  124. # insert_data_into_mongo(pre_data, arguments)