123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- from flask import Flask,request
- import time
- import logging
- import traceback
- import numpy as np
- from itertools import chain
- from common.database_dml import get_data_from_mongo,insert_data_into_mongo,get_h5_model_from_mongo,get_scaler_model_from_mongo
- from common.processing_data_common import str_to_list
- from common.alert import send_message
- from datetime import date, timedelta
- import pandas as pd
- app = Flask('model_prediction_lstm——service')
- # 创建时间序列数据
- def create_sequences(data_features,data_target,time_steps):
- X, y = [], []
- if len(data_features)<time_steps:
- print("数据长度不能比时间步长小!")
- return np.array(X), np.array(y)
- else:
- for i in range(len(data_features) - time_steps+1):
- X.append(data_features[i:(i + time_steps)])
- if len(data_target)>0:
- y.append(data_target[i + time_steps -1])
- return np.array(X), np.array(y)
- def forecast_data_distribution(pre_data,args):
- features, time_steps, col_time, model_name = str_to_list(args['features']), int(args['time_steps']), \
- args['col_time'], args['model_name'],
- feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
- tomorrow = (date.today() + timedelta(days=1)).strftime('%Y-%m-%d')
- field_mapping = {'clearsky_ghi': 'clearskyGhi', 'dni_calcd': 'dniCalcd','surface_pressure':'surfacePressure',}
- # 根据字段映射重命名列
- pre_data = pre_data.rename(columns=field_mapping)
- diff = set(features) - set(pre_data.columns)
- if len(pre_data)==0:
- send_message('lstm预测组件', args['farmId'], '请注意:获取NWP数据为空,预测文件无法生成!')
- result = pd.DataFrame({col_time:[],'farm_id':[],'power_forecast':[]})
- elif len(diff)>0:
- send_message('lstm预测组件', args['farmId'], f'NWP特征列缺失!features:{diff}')
- result = pre_data[['date_time', 'farm_id', 'power_forecast']]
- elif len(pre_data[pre_data[col_time].str.contains(tomorrow)])<96:
- send_message('lstm预测组件', args['farmId'], "日前数据记录缺失,不足96条,用DQ代替并补值!")
- start_time = pre_data[col_time].min()
- end_time = pre_data[col_time].max()
- date_range = pd.date_range(start=start_time, end=end_time, freq='15T').strftime('%Y-%m-%d %H:%M:%S').tolist()
- df_date = pd.DataFrame({col_time:date_range})
- result = pd.merge(df_date,pre_data,how='left',on=col_time).sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
- result = result[['date_time', 'farm_id', 'power_forecast']]
- else:
- df = pre_data.sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
- scaled_features = feature_scaler.transform(df[features])
- X_predict, _ = create_sequences(scaled_features, [], time_steps)
- model = get_h5_model_from_mongo(args)
- y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(X_predict).flatten()])))
- result = df[-len(y_predict):]
- result['power_forecast'] = y_predict
- result.loc[result['power_forecast'] < 0, 'power_forecast'] = 0
- return result[['date_time','farm_id','power_forecast']]
- def model_prediction(df,args):
- if 'is_limit' in df.columns:
- df = df[df['is_limit'] == False]
- features, time_steps, col_time, model_name,col_reserve,howlongago = str_to_list(args['features']), int(args['time_steps']),args['col_time'],args['model_name'],str_to_list(args['col_reserve']),int(args['howlongago'])
- feature_scaler,target_scaler = get_scaler_model_from_mongo(args)
- df = df.sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
- scaled_features = feature_scaler.transform(df[features])
- X_predict, _ = create_sequences(scaled_features, [], time_steps)
- # 加载模型时传入自定义损失函数
- # model = load_model(f'{farmId}_model.h5', custom_objects={'rmse': rmse})
- model = get_h5_model_from_mongo(args)
- y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(X_predict).flatten()])))
- result['howlongago'] = howlongago
- result = df[-len(y_predict):]
- result['predict'] = y_predict
- result.loc[result['predict'] < 0, 'predict'] = 0
- result['model'] = model_name
- features_reserve = col_reserve + ['model', 'predict', 'howlongago']
- return result[set(features_reserve)]
- @app.route('/model_prediction_lstm', methods=['POST'])
- def model_prediction_lstm():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args',args)
- logger.info(args)
- forecast_file = int(args['forecast_file'])
- power_df = get_data_from_mongo(args)
- if forecast_file == 1:
- predict_data = forecast_data_distribution(power_df,args)
- else:
- predict_data = model_prediction(power_df,args)
- insert_data_into_mongo(predict_data,args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n","\t")
- result['msg'] = my_exception
- end_time = time.time()
-
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__=="__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_prediction_lstm log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10097)
- print("server start!")
-
|