tf_bp_train.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp_train.py
  4. # @Time :2025/2/13 13:35
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_tf.tf_bp import BPHandler
  15. from common.database_dml_koi import *
  16. import matplotlib.pyplot as plt
  17. from common.logs import Log
  18. logger = Log('tf_bp').logger
  19. np.random.seed(42) # NumPy随机种子
  20. app = Flask('tf_bp_train——service')
  21. with app.app_context():
  22. current_dir = os.path.dirname(os.path.abspath(__file__))
  23. with open(os.path.join(current_dir, 'bp.yaml'), 'r', encoding='utf-8') as f:
  24. args = yaml.safe_load(f)
  25. dh = DataHandler(logger, args)
  26. bp = BPHandler(logger, args)
  27. @app.before_request
  28. def update_config():
  29. # ------------ 整理参数,整合请求参数 ------------
  30. args_dict = request.values.to_dict()
  31. args_dict['features'] = args_dict['features'].split(',')
  32. args.update(args_dict)
  33. opt = argparse.Namespace(**args)
  34. dh.opt = opt
  35. bp.opt = opt
  36. logger.info(args)
  37. @app.route('/nn_bp_training', methods=['POST'])
  38. def model_training_bp():
  39. # 获取程序开始时间
  40. start_time = time.time()
  41. result = {}
  42. success = 0
  43. print("Program starts execution!")
  44. try:
  45. # ------------ 获取数据,预处理训练数据 ------------
  46. train_data = get_data_from_mongo(args)
  47. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, bp_data=True)
  48. bp.opt.cap = round(scaled_cap, 2)
  49. bp.opt.Model['input_size'] = len(dh.opt.features)
  50. # ------------ 训练模型 ------------
  51. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  52. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  53. model = bp.train_init() if bp.opt.Model['add_train'] else bp.get_keras_model(bp.opt)
  54. if bp.opt.Model['add_train']:
  55. if model:
  56. feas = json.loads(bp.model_params).get('features', args['features'])
  57. if set(feas).issubset(set(dh.opt.features)):
  58. dh.opt.features = list(feas)
  59. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  60. else:
  61. model = bp.get_keras_model(bp.opt)
  62. logger.info("训练数据特征,不满足,加强训练模型特征")
  63. else:
  64. model = bp.get_keras_model(bp.opt)
  65. bp_model = bp.training(model, [train_x, train_y, valid_x, valid_y])
  66. # ------------ 保存模型 ------------
  67. args['Model']['features'] = ','.join(dh.opt.features)
  68. args['params'] = json.dumps(args)
  69. args['descr'] = '测试'
  70. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  71. insert_trained_model_into_mongo(bp_model, args)
  72. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  73. success = 1
  74. except Exception as e:
  75. my_exception = traceback.format_exc()
  76. my_exception.replace("\n", "\t")
  77. result['msg'] = my_exception
  78. end_time = time.time()
  79. result['success'] = success
  80. result['args'] = args
  81. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  82. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  83. print("Program execution ends!")
  84. return result
  85. if __name__ == "__main__":
  86. print("Program starts execution!")
  87. from waitress import serve
  88. serve(
  89. app,
  90. host="0.0.0.0",
  91. port=10111,
  92. threads=8, # 指定线程数(默认4,根据硬件调整)
  93. channel_timeout=600 # 连接超时时间(秒)
  94. )
  95. # print("server start!")
  96. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  97. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  98. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  99. # args_dict['features'] = args_dict['features'].split(',')
  100. # arguments.update(args_dict)
  101. # dh = DataHandler(logger, arguments)
  102. # bp = BPHandler(logger)
  103. # opt = argparse.Namespace(**arguments)
  104. # opt.Model['input_size'] = len(opt.features)
  105. # train_data = get_data_from_mongo(args_dict)
  106. # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
  107. # bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
  108. #
  109. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  110. # args_dict['params'] = arguments
  111. # args_dict['descr'] = '测试'
  112. # insert_trained_model_into_mongo(bp_model, args_dict)
  113. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)