#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName :tf_lstm_pre.py # @Time :2025/2/13 10:52 # @Author :David # @Company: shenyang JY import json, copy import numpy as np from flask import Flask, request import logging, argparse, traceback from common.database_dml import * from common.processing_data_common import missing_features, str_to_list from data_processing.data_operation.data_handler import DataHandler from threading import Lock import time, yaml model_lock = Lock() from itertools import chain from common.logs import Log from tf_lstm import TSHandler # logger = Log('tf_bp').logger() logger = Log('tf_bp').logger np.random.seed(42) # NumPy随机种子 # tf.set_random_seed(42) # TensorFlow随机种子 app = Flask('tf_lstm_pre——service') with app.app_context(): with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f: args = yaml.safe_load(f) dh = DataHandler(logger, args) ts = TSHandler(logger, args) global opt @app.before_request def update_config(): # ------------ 整理参数,整合请求参数 ------------ args_dict = request.values.to_dict() args_dict['features'] = args_dict['features'].split(',') args.update(args_dict) opt = argparse.Namespace(**args) dh.opt = opt ts.opt = opt logger.info(args) @app.route('/nn_lstm_predict', methods=['POST']) def model_prediction_bp(): # 获取程序开始时间 start_time = time.time() result = {} success = 0 print("Program starts execution!") try: pre_data = get_data_from_mongo(args) feature_scaler, target_scaler = get_scaler_model_from_mongo(args) scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler, args) ts.get_model(args) # result = bp.predict(scaled_pre_x, args) res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()]))) pre_data['power_forecast'] = res[:len(pre_data)] pre_data['farm_id'] = 'J00083' pre_data['cdq'] = 1 pre_data['dq'] = 1 pre_data['zq'] = 1 pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True) pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']] pre_data['power_forecast'] = pre_data['power_forecast'].round(2) pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0 insert_data_into_mongo(pre_data, args) success = 1 except Exception as e: my_exception = traceback.format_exc() my_exception.replace("\n", "\t") result['msg'] = my_exception end_time = time.time() result['success'] = success result['args'] = args result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)) result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time)) print("Program execution ends!") return result if __name__ == "__main__": print("Program starts execution!") logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger("model_training_bp log") from waitress import serve # serve(app, host="0.0.0.0", port=1010x, threads=4) print("server start!") # ------------------------测试代码------------------------ args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test', 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs', 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'} args_dict['features'] = args_dict['features'].split(',') arguments.update(args_dict) dh = DataHandler(logger, arguments) ts = TSHandler(logger) opt = argparse.Namespace(**arguments) opt.Model['input_size'] = len(opt.features) pre_data = get_data_from_mongo(args_dict) feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments) pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt) ts.get_model(arguments) result = ts.predict(pre_x) result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()]))) pre_data['power_forecast'] = result1[:len(pre_data)] pre_data['farm_id'] = 'J00083' pre_data['cdq'] = 1 pre_data['dq'] = 1 pre_data['zq'] = 1 pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True) pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']] pre_data['power_forecast'] = pre_data['power_forecast'].round(2) pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0 insert_data_into_mongo(pre_data, arguments)