#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName :tf_lstm_train.py # @Time :2025/2/13 10:52 # @Author :David # @Company: shenyang JY import json, copy import numpy as np from flask import Flask, request import traceback import logging, argparse from data_processing.data_operation.data_handler import DataHandler import time, yaml from models_processing.model_koi.tf_lstm import TSHandler from models_processing.model_koi.tf_cnn import CNNHandler from common.database_dml import * import matplotlib.pyplot as plt from common.logs import Log logger = logging.getLogger() # logger = Log('models-processing').logger np.random.seed(42) # NumPy随机种子 # tf.set_random_seed(42) # TensorFlow随机种子 app = Flask('tf_lstm_train——service') with app.app_context(): with open('../model_koi/lstm.yaml', 'r', encoding='utf-8') as f: args = yaml.safe_load(f) dh = DataHandler(logger, args) ts = TSHandler(logger, args) # ts = CNNHandler(logger, args) global opt @app.before_request def update_config(): # ------------ 整理参数,整合请求参数 ------------ args_dict = request.values.to_dict() args_dict['features'] = args_dict['features'].split(',') args.update(args_dict) opt = argparse.Namespace(**args) dh.opt = opt ts.opt = opt logger.info(args) @app.route('/nn_lstm_training', methods=['POST']) def model_training_bp(): # 获取程序开始时间 start_time = time.time() result = {} success = 0 print("Program starts execution!") try: # ------------ 获取数据,预处理训练数据 ------------ train_data = get_data_from_mongo(args) train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data) # ------------ 训练模型,保存模型 ------------ ts.opt.Model['input_size'] = train_x.shape[2] ts_model = ts.training([train_x, valid_x, train_y, valid_y]) args['params'] = json.dumps(args) args['descr'] = '测试' args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) insert_trained_model_into_mongo(ts_model, args) insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args) success = 1 except Exception as e: my_exception = traceback.format_exc() my_exception.replace("\n", "\t") result['msg'] = my_exception end_time = time.time() result['success'] = success result['args'] = args result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)) result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time)) print("Program execution ends!") return result if __name__ == "__main__": print("Program starts execution!") logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger("model_training_bp log") from waitress import serve serve(app, host="0.0.0.0", port=10115, threads=4) print("server start!") # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1', # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime', # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'} # args_dict['features'] = args_dict['features'].split(',') # args.update(args_dict) # dh = DataHandler(logger, args) # ts = TSHandler(logger, args) # opt = argparse.Namespace(**args) # opt.Model['input_size'] = len(opt.features) # train_data = get_data_from_mongo(args_dict) # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data) # ts_model = ts.training([train_x, train_y, valid_x, valid_y]) # # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) # args_dict['params'] = args # args_dict['descr'] = '测试' # insert_trained_model_into_mongo(ts_model, args_dict) # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)