import lightgbm as lgb import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error,mean_absolute_error from flask import Flask,request import time import traceback import logging from common.database_dml import get_data_from_mongo,insert_pickle_model_into_mongo from common.processing_data_common import missing_features,str_to_list app = Flask('model_training_lightgbm——service') def build_model(df,args): np.random.seed(42) #lightgbm预测下 numerical_features,categorical_features,label,model_name,num_boost_round,model_params,col_time = str_to_list(args['numerical_features']),str_to_list(args['categorical_features']),args['label'],args['model_name'],int(args['num_boost_round']),eval(args['model_params']),args['col_time'] features = numerical_features+categorical_features print("features:************",features) if 'is_limit' in df.columns: df = df[df['is_limit']==False] # 清洗特征平均缺失率大于20%的天 df = missing_features(df, features, col_time) df = df[~np.isnan(df[label])] # 拆分数据为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df[features], df[label], test_size=0.2, random_state=42) # 创建LightGBM数据集 lgb_train = lgb.Dataset(X_train, y_train,categorical_feature=categorical_features) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # 设置参数 params = { 'objective': 'regression', 'metric': 'rmse', 'boosting_type': 'gbdt', 'verbose':1 } params.update(model_params) # 训练模型 print('Starting training...') gbm = lgb.train(params, lgb_train, num_boost_round=num_boost_round, valid_sets=[lgb_train, lgb_eval], ) y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # 评估 mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_test, y_pred) print(f'The test rmse is: {rmse},"The test mae is:"{mae}') return gbm @app.route('/model_training_lightgbm', methods=['POST']) def model_training_lightgbm(): # 获取程序开始时间 start_time = time.time() result = {} success = 0 print("Program starts execution!") try: args = request.values.to_dict() print('args',args) logger.info(args) power_df = get_data_from_mongo(args) model = build_model(power_df,args) insert_pickle_model_into_mongo(model,args) success = 1 except Exception as e: my_exception = traceback.format_exc() my_exception.replace("\n","\t") result['msg'] = my_exception end_time = time.time() result['success'] = success result['args'] = args result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)) result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time)) print("Program execution ends!") return result if __name__=="__main__": print("Program starts execution!") logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger("model_training_lightgbm log") from waitress import serve serve(app, host="0.0.0.0", port=10089) print("server start!")