# -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as plt from pymongo import MongoClient import pickle import numpy as np import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go from flask import Flask,request,jsonify from waitress import serve import time import random import argparse import logging import traceback import os import lightgbm as lgb app = Flask('analysis_report——service') def get_data_from_mongo(args): # 1.读数据 mongodb_connection,mongodb_database,all_table,accuracy_table,model_table,model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['train_table'],args['accuracy_table'],args['model_table'],args['model_name'] client = MongoClient(mongodb_connection) # 选择数据库(如果数据库不存在,MongoDB 会自动创建) db = client[mongodb_database] # 将游标转换为列表,并创建 pandas DataFrame df_all = pd.DataFrame(db[all_table].find({}, {'_id': 0})) df_accuracy = pd.DataFrame(db[accuracy_table].find({}, {'_id': 0})) model_data = db[model_table].find_one({"model_name": model_name}) if model_data is not None: model_binary = model_data['model'] # 确保这个字段是存储模型的二进制数据 # 反序列化模型 model = pickle.loads(model_binary) client.close() return df_all,df_accuracy,model def draw_info(df_all,df_accuracy,model,features,args): #1.数据描述 数据描述: col_time = args['col_time'] label = args['label'] df_accuracy_beginTime = df_accuracy[col_time].min() df_accuracy_endTime = df_accuracy[col_time].max() df_train = df_all[df_all[col_time]lightgbm模型参数:{model.params}" return text_content def draw_global_scatter(df,args): # --- 1. 实际功率和辐照度的散点图 --- col_x = args['scatter_col_x'] col_y = args['label'] scatter_fig = px.scatter( df, x=col_x, y=col_y, title=f"{col_x}和{col_y}的散点图", labels={"辐照度": "辐照度 (W/m²)", "实际功率": "实际功率 (kW)"} ) return scatter_fig def draw_corr(df,features,args): # --- 2. 相关性热力图 --- # 计算相关性矩阵 label = args['label'] features_coor = features+[label] corr_matrix = df[features_coor].corr() # 使用 Plotly Express 绘制热力图 heatmap_fig = px.imshow(corr_matrix, text_auto=True, # 显示数值 color_continuous_scale='RdBu', # 配色方案 title="Correlation Heatmap") heatmap_fig.update_coloraxes(showscale=False) return heatmap_fig def draw_feature_importance(model,features): # --- 3. 特征重要性排名 --- # 获取特征重要性 importance = model.feature_importance() # 'split' 或 'gain',根据需求选择 # 转换为 DataFrame 方便绘图 feature_importance_df = pd.DataFrame({ 'Feature': features, 'Importance': importance }) feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False) # 使用 Plotly Express 绘制条形图 importance_fig = px.bar(feature_importance_df, x='Feature', y='Importance', title="特征重要性排名", labels={'Feature': '特征', 'Importance': '重要性'}, color='Importance', color_continuous_scale='Viridis') # 更新每个 trace,确保没有图例 importance_fig.update_layout(title="模型特征重要性排名", showlegend=False # 移除图例 ) importance_fig.update_coloraxes(showscale=False) return importance_fig def draw_data_info_table(content): # --- 4. 创建数据说明的表格 --- # 转换为表格格式:1行1列,且填充文字说明 # 转换为表格格式 # 创建一个空的图 table_fig = go.Figure() # 第一部分: 显示文字说明 table_fig.add_trace(go.Table( header=dict( values=["说明"], # 表格只有一列:说明 fill_color="paleturquoise", align="center" ), cells=dict( values=[[content]] , # 第一行填入文本说明 fill_color="lavender", align="center" ) )) return table_fig def draw_accuracy_table(df,content): # --- 4. 每日的准确率表格 --- # 转换为表格格式 table_fig = go.Figure( data=[ go.Table( header=dict( values=list(df.columns), fill_color="paleturquoise", align="center" ), cells=dict( values=[df[col] for col in df.columns], fill_color="lavender", align="center" ) ) ] ) table_fig.update_layout(title="准确率表", showlegend=False) return table_fig @app.route('/analysis_report', methods=['POST']) def analysis_report(): start_time = time.time() result = {} success = 0 path = "" print("Program starts execution!") try: args = request.values.to_dict() print('args',args) logger.info(args) #获取数据 df_all, df_accuracy, model = get_data_from_mongo(args) features = model.feature_name() text_content = draw_info(df_all,df_accuracy,model,features,args) text_fig,scatter_fig,heatmap_fig,importance_fig,table_fig=draw_data_info_table(text_content),draw_global_scatter(df_all,args),draw_corr(df_all,features,args),draw_feature_importance(model,features),\ draw_accuracy_table(df_accuracy,text_content) # --- 合并图表并保存到一个 HTML 文件 --- # 创建子图布局 combined_fig = make_subplots( rows=5, cols=1, subplot_titles=["数据-模型概览","辐照度和实际功率的散点图", "相关性","特征重要性排名", "准确率表"], row_heights=[0.3, 0.6, 0.6, 0.6, 0.4], specs=[[{"type": "table"}], [{"type": "xy"}], [{"type": "heatmap"}], [{"type": "xy"}],[{"type": "table"}]] # 指定每个子图类型 ) # 添加文本信息到子图(第一行) # 添加文字说明 for trace in text_fig.data: combined_fig.add_trace(trace, row=1, col=1) # 添加散点图 for trace in scatter_fig.data: combined_fig.add_trace(trace, row=2, col=1) # 添加相关性热力图 for trace in heatmap_fig.data: combined_fig.add_trace(trace, row=3, col=1) # 添加特征重要性排名图 for trace in importance_fig.data: combined_fig.add_trace(trace, row=4, col=1) # 添加表格 for trace in table_fig.data: combined_fig.add_trace(trace, row=5, col=1) # 更新布局 combined_fig.update_layout( height=1500, title_text="分析结果汇总", # 添加换行符以适应文本内容 title_x=0.5, # 中心对齐标题 showlegend=False, ) combined_fig.update_coloraxes(showscale=False) filename = f"{int(time.time() * 1000)}_{random.randint(1000, 9999)}.html" # 保存为 HTML directory = '/usr/share/nginx/html' if not os.path.exists(directory): os.makedirs(directory) file_path = os.path.join(directory, filename) # combined_fig.write_html(f"D://usr//{filename}") combined_fig.write_html(file_path) path = f"http://ds2:10093/{filename}" success = 1 except Exception as e: my_exception = traceback.format_exc() my_exception.replace("\n","\t") result['msg'] = my_exception end_time = time.time() result['success'] = success result['args'] = args result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)) result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time)) result['file_path'] = path print("Program execution ends!") return result if __name__=="__main__": print("Program starts execution!") logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger("analysis_report log") from waitress import serve serve(app, host="0.0.0.0", port=10092) print("server start!")