#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName :cdq_coe_gen.py # @Time :2025/3/28 16:20 # @Author :David # @Company: shenyang JY import os, requests, json import pandas as pd import numpy as np from common.database_dml_koi import get_data_from_mongo from pymongo import MongoClient from flask import Flask,request,jsonify from datetime import datetime from common.logs import Log logger = Log('post-processing').logger current_path = os.path.dirname(__file__) API_URL = "http://ds2:18080/accuracyAndBiasByJSON" def iterate_coe(pre_data, point, col_power, col_pre): """ 更新16个点系数 """ coe = {} T = 'T' + str(point + 1) best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0 best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0 req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix') req_dq = prepare_request_body(pre_data, col_power, col_pre) his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix) dq_acc, dq_score = calculate_acc(API_URL, req_dq) for i in range(5, 210): for j in range(5, 210): pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3) req_new = prepare_request_body(pre_data, col_power, 'new') acc, acc_score = calculate_acc(API_URL, req_new) if acc > best_acc: best_acc = acc best_score1 = acc_score best_coe_m = i / 170 best_coe_n = j / 170 if acc_score < best_score: best_score = acc_score best_acc1 = acc best_score_m = i / 170 best_score_n = j / 170 pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3) pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3) logger.info( "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format( pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc)) logger.info( "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format( pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score)) logger.info( "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format( pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc)) logger.info( "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format( pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score)) coe[T]['score_m'] = round(best_score_m, 3) coe[T]['score_n'] = round(best_score_n, 3) coe[T]['acc_m'] = round(best_coe_m, 3) coe[T]['acc_n'] = round(best_coe_n, 3) logger.info("系数轮询后,最终调整的系数为:{}".format(coe)) def prepare_request_body(df, col_power, col_pre): """ 准备请求体,动态保留MongoDB中的所有字段 """ # 转换时间格式为字符串 if 'dateTime' in df.columns and isinstance(df['dateTime'].iloc[0], datetime): df['dateTime'] = df['dateTime'].dt.strftime('%Y-%m-%d %H:%M:%S') # 排除不需要的字段(如果有) exclude_fields = ['_id'] # 通常排除MongoDB的默认_id字段 # 获取所有字段名(排除不需要的字段) available_fields = [col for col in df.columns if col not in exclude_fields] # 转换为记录列表(保留所有字段) data = df[available_fields].to_dict('records') # 构造请求体(固定部分+动态数据部分) request_body = { "stationCode": "J00600", "realPowerColumn": col_power, "ablePowerColumn": col_power, "predictPowerColumn": col_pre, "inStalledCapacityName": 153, "computTypeEnum": "E2", "computMeasEnum": "E2", "openCapacityName": 153, "onGridEnergy": 0, "price": 0, "fault": -99, "colTime": "dateTime", #时间列名(可选,要与上面'dateTime一致') # "computPowersEnum": "E4" # 计算功率类型(可选) "data": data # MongoDB数据 } return request_body def calculate_acc(api_url, request_body): """ 调用API接口 """ headers = { 'Content-Type': 'application/json', 'Accept': 'application/json' } try: response = requests.post( api_url, data=json.dumps(request_body, ensure_ascii=False), headers=headers ) result = response.json() if result['status'] == 200: acc = np.average([res['accuracy'] for res in result]) ass = np.average([res['accuracyAssessment'] for res in result]) return acc, ass else: logger.info(f"失败:{result['status']},{result['error']}") except requests.exceptions.RequestException as e: print(f"API调用失败: {e}") return None def history_error(data, col_power, col_pre): data['error'] = data[col_power] - data[col_pre] data['error'] = data['error'].round(2) data.reset_index(drop=True, inplace=True) # 用前面5个点的平均error,和象心力相加 numbers = len(data) - 5 datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)] data_error = [np.mean(d.iloc[0:5, -1]) for d in datas] pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0) data['his_fix'] = data[col_pre] + pad_data_error data = data.iloc[5:, :].reset_index(drop=True) data.loc[data[col_pre] <= 0, ['his_fix']] = 0 data['dateTime'] = pd.to_datetime(data['dateTime']) data = data.loc[:, ['dateTime', col_power, col_pre, 'his_fix']] # data.to_csv('J01080原始数据.csv', index=False) return data if __name__ == "__main__": args = { 'mongodb_database': 'ldw_ftp', 'mongodb_read_table': 'j00600', # 'timeBegin': '2025-01-01 00:00:00', # 'timeEnd': '2025-01-03 23:45:00' } data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True) pre_data = history_error(data, col_power='realPower', col_pre='dq') for point in range(0, 16, 1): iterate_coe(pre_data, point, 'realPower', 'dq') run_code = 0