import pandas as pd import numpy as np from pymongo import MongoClient from sklearn.model_selection import train_test_split from flask import Flask,request import time import traceback import logging from sklearn.preprocessing import MinMaxScaler from io import BytesIO import joblib from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau import matplotlib.pyplot as plt import tensorflow as tf app = Flask('model_training_lightgbm——service') def draw_loss(history): #绘制训练集和验证集损失 plt.figure(figsize=(20, 8)) plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.title('Loss Curve') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() def get_data_from_mongo(args): mongodb_connection,mongodb_database,mongodb_read_table,timeBegin,timeEnd = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_read_table'],args['timeBegin'],args['timeEnd'] client = MongoClient(mongodb_connection) # 选择数据库(如果数据库不存在,MongoDB 会自动创建) db = client[mongodb_database] collection = db[mongodb_read_table] # 集合名称 query = {"dateTime": {"$gte": timeBegin, "$lte": timeEnd}} cursor = collection.find(query) data = list(cursor) df = pd.DataFrame(data) # 4. 删除 _id 字段(可选) if '_id' in df.columns: df = df.drop(columns=['_id']) client.close() return df def insert_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args): mongodb_connection,mongodb_database,scaler_table,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/", args['mongodb_database'],args['scaler_table'],args['model_table'],args['model_name']) client = MongoClient(mongodb_connection) db = client[mongodb_database] collection = db[scaler_table] # 集合名称 # Save the scalers in MongoDB as binary data collection.insert_one({ "feature_scaler": feature_scaler_bytes.read(), "target_scaler": target_scaler_bytes.read() }) print("model inserted successfully!") model_table = db[model_table] # 创建 BytesIO 缓冲区 model_buffer = BytesIO() # 将模型保存为 HDF5 格式到内存 (BytesIO) model.save(model_buffer, save_format='h5') # 将指针移到缓冲区的起始位置 model_buffer.seek(0) # 获取模型的二进制数据 model_data = model_buffer.read() # 将模型保存到 MongoDB model_table.insert_one({ "model_name": model_name, "model_data": model_data }) print("模型成功保存到 MongoDB!") def rmse(y_true, y_pred): return tf.math.sqrt(tf.reduce_mean(tf.square(y_true - y_pred))) # 创建时间序列数据 def create_sequences(data_features,data_target,time_steps): X, y = [], [] if len(data_features)0: y.append(data_target[i + time_steps -1]) return np.array(X), np.array(y) def build_model(data, args): begin_time, end_time, col_time, time_steps,features,target = args['begin_time'], args['end_time'], args['col_time'], args['time_steps'], args['features'],args['target'] train_data = data[(data[col_time] >= begin_time)&(data[col_time] < end_time)] # X_train, X_test, y_train, y_test = process_data(df_clean, params) # 创建特征和目标的标准化器 feature_scaler = MinMaxScaler(feature_range=(0, 1)) target_scaler = MinMaxScaler(feature_range=(0, 1)) # 标准化特征和目标 scaled_features = feature_scaler.fit_transform(data[features]) scaled_target = target_scaler.fit_transform(data[[target]]) # 保存两个scaler feature_scaler_bytes = BytesIO() joblib.dump(feature_scaler, feature_scaler_bytes) feature_scaler_bytes.seek(0) # Reset pointer to the beginning of the byte stream target_scaler_bytes = BytesIO() joblib.dump(target_scaler, target_scaler_bytes) target_scaler_bytes.seek(0) X, y = create_sequences(scaled_features, scaled_target, time_steps) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=43) # 构建 LSTM 模型 model = Sequential() model.add(LSTM(units=50, return_sequences=False, input_shape=(time_steps, X_train.shape[2]))) model.add(Dense(1)) # 输出单一值 # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') # 定义 EarlyStopping 和 ReduceLROnPlateau 回调 early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True, verbose=1) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1) # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test), verbose=2, callbacks=[early_stopping, reduce_lr]) draw_loss(history) return model,feature_scaler_bytes,target_scaler_bytes def str_to_list(arg): if arg == '': return [] else: return arg.split(',') @app.route('/model_training_lstm', methods=['POST']) def model_training_lstm(): # 获取程序开始时间 start_time = time.time() result = {} success = 0 print("Program starts execution!") try: args = request.values.to_dict() print('args',args) logger.info(args) power_df = get_data_from_mongo(args) model,feature_scaler_bytes,target_scaler_bytes = build_model(power_df,args) insert_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args) success = 1 except Exception as e: my_exception = traceback.format_exc() my_exception.replace("\n","\t") result['msg'] = my_exception end_time = time.time() result['success'] = success result['args'] = args result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)) result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time)) print("Program execution ends!") return result if __name__=="__main__": print("Program starts execution!") logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger("model_training_lightgbm log") from waitress import serve serve(app, host="0.0.0.0", port=10096) print("server start!")