|
@@ -103,7 +103,7 @@ class DataHandler(object):
|
|
|
label_features = [col_time, target] if is_train is True else [col_time, target]
|
|
|
nwp_cs = self.opt.features
|
|
|
nwp = [feature_data.loc[i:i + time_step_loc, nwp_cs].reset_index(drop=True) for i in range(train_num - time_step*2 + 1)] # 数据库字段 'C_T': 'C_WS170'
|
|
|
- labels = [feature_data.loc[i+time_step:i+time_step_loc, label_features].reset_index(drop=True) for i in range(train_num - time_step*2 + 1)]
|
|
|
+ labels = [feature_data.loc[i: i+time_step_loc, label_features].reset_index(drop=True) for i in range(train_num - time_step*2 + 1)]
|
|
|
features_x, features_y = [], []
|
|
|
for i, row in enumerate(zip(nwp, labels)):
|
|
|
features_x.append(row[0])
|
|
@@ -122,7 +122,7 @@ class DataHandler(object):
|
|
|
label_features = [col_time, target] if is_train is True else [col_time, target]
|
|
|
nwp_cs = self.opt.features
|
|
|
nwp = [feature_data.loc[i:i + time_step_loc, nwp_cs].reset_index(drop=True) for i in range(train_num - time_step*3 + 1)] # 数据库字段 'C_T': 'C_WS170'
|
|
|
- labels = [feature_data.loc[i+time_step:i+time_step_m, label_features].reset_index(drop=True) for i in range(train_num - time_step*3 + 1)]
|
|
|
+ labels = [feature_data.loc[i: i+time_step_loc, label_features].reset_index(drop=True) for i in range(train_num - time_step*3 + 1)]
|
|
|
features_x, features_y = [], []
|
|
|
for i, row in enumerate(zip(nwp, labels)):
|
|
|
features_x.append(row[0])
|