|
@@ -87,21 +87,21 @@ if __name__ == "__main__":
|
|
|
|
|
|
serve(app, host="0.0.0.0", port=10103, threads=4)
|
|
|
print("server start!")
|
|
|
- # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
- # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
|
|
|
+ # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
|
|
|
+ # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
|
|
|
# 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
# args_dict['features'] = args_dict['features'].split(',')
|
|
|
- # arguments.update(args_dict)
|
|
|
- # dh = DataHandler(logger, arguments)
|
|
|
- # ts = TSHandler(logger)
|
|
|
- # opt = argparse.Namespace(**arguments)
|
|
|
+ # args.update(args_dict)
|
|
|
+ # dh = DataHandler(logger, args)
|
|
|
+ # ts = TSHandler(logger, args)
|
|
|
+ # opt = argparse.Namespace(**args)
|
|
|
# opt.Model['input_size'] = len(opt.features)
|
|
|
# train_data = get_data_from_mongo(args_dict)
|
|
|
- # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
|
|
|
- # ts_model = ts.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
+ # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
|
|
|
+ # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
|
|
|
#
|
|
|
# args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
- # args_dict['params'] = arguments
|
|
|
+ # args_dict['params'] = args
|
|
|
# args_dict['descr'] = '测试'
|
|
|
# insert_trained_model_into_mongo(ts_model, args_dict)
|
|
|
# insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|