|
@@ -0,0 +1,119 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding:utf-8 -*-
|
|
|
+# @FileName :tf_bp_pre.py
|
|
|
+# @Time :2025/2/13 13:35
|
|
|
+# @Author :David
|
|
|
+# @Company: shenyang JY
|
|
|
+import json, copy
|
|
|
+import numpy as np
|
|
|
+from flask import Flask, request
|
|
|
+import logging, argparse, traceback
|
|
|
+from common.database_dml import *
|
|
|
+from common.processing_data_common import missing_features, str_to_list
|
|
|
+from data_processing.data_operation.data_handler import DataHandler
|
|
|
+from threading import Lock
|
|
|
+import time, yaml
|
|
|
+model_lock = Lock()
|
|
|
+from itertools import chain
|
|
|
+from common.logs import Log
|
|
|
+from tf_bp import BPHandler
|
|
|
+# logger = Log('tf_bp').logger()
|
|
|
+logger = Log('tf_bp').logger
|
|
|
+np.random.seed(42) # NumPy随机种子
|
|
|
+# tf.set_random_seed(42) # TensorFlow随机种子
|
|
|
+app = Flask('tf_bp_pre——service')
|
|
|
+
|
|
|
+with app.app_context():
|
|
|
+ with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f:
|
|
|
+ arguments = yaml.safe_load(f)
|
|
|
+
|
|
|
+ dh = DataHandler(logger, arguments)
|
|
|
+ bp = BPHandler(logger)
|
|
|
+
|
|
|
+
|
|
|
+@app.route('/nn_bp_predict', methods=['POST'])
|
|
|
+def model_prediction_bp():
|
|
|
+ # 获取程序开始时间
|
|
|
+ start_time = time.time()
|
|
|
+ result = {}
|
|
|
+ success = 0
|
|
|
+ print("Program starts execution!")
|
|
|
+ params_dict = request.values.to_dict()
|
|
|
+ args = arguments.deepcopy()
|
|
|
+ args.update(params_dict)
|
|
|
+ try:
|
|
|
+ print('args', args)
|
|
|
+ logger.info(args)
|
|
|
+ pre_data = get_data_from_mongo(args)
|
|
|
+ feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
|
|
|
+ scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler, args, bp_data=True)
|
|
|
+ bp.get_model(args)
|
|
|
+ # result = bp.predict(scaled_pre_x, args)
|
|
|
+ result = list(chain.from_iterable(target_scaler.inverse_transform([bp.predict(scaled_pre_x).flatten()])))
|
|
|
+ pre_data['power_forecast'] = result[:len(pre_data)]
|
|
|
+ pre_data['farm_id'] = 'J00083'
|
|
|
+ pre_data['cdq'] = 1
|
|
|
+ pre_data['dq'] = 1
|
|
|
+ pre_data['zq'] = 1
|
|
|
+ pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
|
|
|
+ pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
|
|
|
+
|
|
|
+ pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
|
+ pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
|
|
|
+ pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
|
|
|
+
|
|
|
+ insert_data_into_mongo(pre_data, arguments)
|
|
|
+ success = 1
|
|
|
+ except Exception as e:
|
|
|
+ my_exception = traceback.format_exc()
|
|
|
+ my_exception.replace("\n", "\t")
|
|
|
+ result['msg'] = my_exception
|
|
|
+ end_time = time.time()
|
|
|
+
|
|
|
+ result['success'] = success
|
|
|
+ result['args'] = args
|
|
|
+ result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
|
|
|
+ result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
|
|
|
+ print("Program execution ends!")
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ print("Program starts execution!")
|
|
|
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
+ logger = logging.getLogger("model_training_bp log")
|
|
|
+ from waitress import serve
|
|
|
+
|
|
|
+ # serve(app, host="0.0.0.0", port=1010x, threads=4)
|
|
|
+ print("server start!")
|
|
|
+
|
|
|
+ # ------------------------测试代码------------------------
|
|
|
+ args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
+ 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
|
|
|
+ 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
+ args_dict['features'] = args_dict['features'].split(',')
|
|
|
+ arguments.update(args_dict)
|
|
|
+ dh = DataHandler(logger, arguments)
|
|
|
+ bp = BPHandler(logger)
|
|
|
+ opt = argparse.Namespace(**arguments)
|
|
|
+
|
|
|
+ opt.Model['input_size'] = len(opt.features)
|
|
|
+ pre_data = get_data_from_mongo(args_dict)
|
|
|
+ feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
|
|
|
+ pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt, bp_data=True)
|
|
|
+ bp.get_model(arguments)
|
|
|
+ result = bp.predict(pre_x)
|
|
|
+ result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
|
|
|
+ pre_data['power_forecast'] = result1[:len(pre_data)]
|
|
|
+ pre_data['farm_id'] = 'J00083'
|
|
|
+ pre_data['cdq'] = 1
|
|
|
+ pre_data['dq'] = 1
|
|
|
+ pre_data['zq'] = 1
|
|
|
+ pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
|
|
|
+ pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
|
|
|
+
|
|
|
+ pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
|
+ pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
|
|
|
+ pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
|
|
|
+
|
|
|
+ insert_data_into_mongo(pre_data, arguments)
|