|
@@ -59,16 +59,16 @@ def model_prediction_bp():
|
|
res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
|
|
res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
|
|
pre_data['power_forecast'] = res[:len(pre_data)]
|
|
pre_data['power_forecast'] = res[:len(pre_data)]
|
|
pre_data['farm_id'] = 'J00083'
|
|
pre_data['farm_id'] = 'J00083'
|
|
- pre_data['cdq'] = args.get('cdq', 1)
|
|
|
|
- pre_data['dq'] = args.get('dq', 1)
|
|
|
|
- pre_data['zq'] = args.get('zq', 1)
|
|
|
|
- res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
|
|
|
|
if args.get('algorithm_test', 0):
|
|
if args.get('algorithm_test', 0):
|
|
- pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
|
|
|
|
- else:
|
|
|
|
pre_data['model'] = 'lstm'
|
|
pre_data['model'] = 'lstm'
|
|
- res_cols += [args['target'], 'model']
|
|
|
|
pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
|
|
pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
|
|
|
|
+ res_cols = ['dateTime', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq', args['target'], 'model']
|
|
|
|
+ else:
|
|
|
|
+ pre_data['cdq'] = args.get('cdq', 1)
|
|
|
|
+ pre_data['dq'] = args.get('dq', 1)
|
|
|
|
+ pre_data['zq'] = args.get('zq', 1)
|
|
|
|
+ pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
|
|
|
|
+ res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
|
|
pre_data = pre_data[res_cols]
|
|
pre_data = pre_data[res_cols]
|
|
|
|
|
|
pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|