|
@@ -21,13 +21,14 @@ def model_prediction(df,args):
|
|
# model = load_model(f'{farmId}_model.h5', custom_objects={'rmse': rmse})
|
|
# model = load_model(f'{farmId}_model.h5', custom_objects={'rmse': rmse})
|
|
model = get_h5_model_from_mongo(args)
|
|
model = get_h5_model_from_mongo(args)
|
|
y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(scaled_features).flatten()])))
|
|
y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(scaled_features).flatten()])))
|
|
- result['howlongago'] = howlongago
|
|
|
|
|
|
+
|
|
result = df[-len(y_predict):]
|
|
result = df[-len(y_predict):]
|
|
result['predict'] = y_predict
|
|
result['predict'] = y_predict
|
|
result.loc[result['predict'] < 0, 'predict'] = 0
|
|
result.loc[result['predict'] < 0, 'predict'] = 0
|
|
result['model'] = model_name
|
|
result['model'] = model_name
|
|
|
|
+ result['howlongago'] = howlongago
|
|
features_reserve = col_reserve + ['model', 'predict', 'howlongago']
|
|
features_reserve = col_reserve + ['model', 'predict', 'howlongago']
|
|
- return result[set(features_reserve)]
|
|
|
|
|
|
+ return result[list(set(features_reserve))]
|
|
|
|
|
|
|
|
|
|
@app.route('/model_prediction_bp', methods=['POST'])
|
|
@app.route('/model_prediction_bp', methods=['POST'])
|