|
@@ -54,14 +54,17 @@ def model_training_bp():
|
|
# 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
|
|
# 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
|
|
# 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
|
|
# 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
|
|
model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
|
|
model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
|
|
- if ts.opt.Model['add_train'] and model is not False:
|
|
|
|
- feas = json.loads(ts.model_params).get('features', args['features'])
|
|
|
|
- if set(feas).issubset(set(dh.opt.features)):
|
|
|
|
- dh.opt.features = list(feas)
|
|
|
|
- train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
|
|
|
|
|
|
+ if ts.opt.Model['add_train']:
|
|
|
|
+ if model:
|
|
|
|
+ feas = json.loads(ts.model_params).get('features', args['features'])
|
|
|
|
+ if set(feas).issubset(set(dh.opt.features)):
|
|
|
|
+ dh.opt.features = list(feas)
|
|
|
|
+ train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
|
|
|
|
+ else:
|
|
|
|
+ model = ts.get_keras_model(ts.opt)
|
|
|
|
+ logger.info("训练数据特征,不满足,加强训练模型特征")
|
|
else:
|
|
else:
|
|
model = ts.get_keras_model(ts.opt)
|
|
model = ts.get_keras_model(ts.opt)
|
|
- logger.info("训练数据特征,不满足,加强训练模型特征")
|
|
|
|
ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
|
|
ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
|
|
args['features'] = dh.opt.features
|
|
args['features'] = dh.opt.features
|
|
args['params'] = json.dumps(args)
|
|
args['params'] = json.dumps(args)
|