|
@@ -7,10 +7,14 @@ import logging
|
|
|
import traceback
|
|
|
from common.database_dml import get_data_from_mongo,insert_data_into_mongo
|
|
|
app = Flask('model_prediction_lightgbm——service')
|
|
|
-
|
|
|
+def str_to_list(arg):
|
|
|
+ if arg == '':
|
|
|
+ return []
|
|
|
+ else:
|
|
|
+ return arg.split(',')
|
|
|
|
|
|
def model_prediction(df,args):
|
|
|
- mongodb_connection,mongodb_database,mongodb_model_table,model_name,model_key = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_model_table']
|
|
|
+ mongodb_connection,mongodb_database,mongodb_model_table,model_name,col_reserve = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_model_table'],args['model_name'],str_to_list(args['col_reserve'])
|
|
|
client = MongoClient(mongodb_connection)
|
|
|
db = client[mongodb_database]
|
|
|
collection = db[mongodb_model_table]
|
|
@@ -22,7 +26,8 @@ def model_prediction(df,args):
|
|
|
df['predict'] = model.predict(df[model.feature_name()])
|
|
|
df['model'] = model_name
|
|
|
print("model predict result successfully!")
|
|
|
- return df
|
|
|
+ features_reserve = col_reserve + ['model','predict']
|
|
|
+ return df[set(features_reserve)]
|
|
|
|
|
|
|
|
|
@app.route('/model_prediction_lightgbm', methods=['POST'])
|