|
@@ -8,13 +8,11 @@ import os, requests, json, time, traceback
|
|
|
import pandas as pd
|
|
|
import numpy as np
|
|
|
from common.database_dml_koi import get_data_from_mongo
|
|
|
-from pymongo import MongoClient
|
|
|
-from flask import Flask,request,jsonify, g
|
|
|
+from flask import Flask, request, g
|
|
|
from datetime import datetime
|
|
|
-# from common.logs import Log
|
|
|
-# logger = Log('post-processing').logger
|
|
|
-from logging import getLogger
|
|
|
-logger = getLogger('xx')
|
|
|
+from common.logs import Log
|
|
|
+
|
|
|
+logger = Log('post-processing').logger
|
|
|
current_path = os.path.dirname(__file__)
|
|
|
API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
|
|
|
app = Flask('cdq_coe_gen——service')
|
|
@@ -23,7 +21,7 @@ app = Flask('cdq_coe_gen——service')
|
|
|
@app.before_request
|
|
|
def update_config():
|
|
|
# ------------ 整理参数,整合请求参数 ------------
|
|
|
- g.coe = {}
|
|
|
+ g.coe = {'T'+str(x):{} for x in range(1, 17)}
|
|
|
|
|
|
|
|
|
def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
@@ -32,7 +30,8 @@ def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
"""
|
|
|
T = 'T' + str(point + 1)
|
|
|
best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
|
|
|
- best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0
|
|
|
+ best_score, best_acc1, best_score_m, best_score_n = 999, 0, 999, 0
|
|
|
+
|
|
|
req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
|
|
|
req_dq = prepare_request_body(pre_data, col_power, col_pre)
|
|
|
|
|
@@ -57,18 +56,10 @@ def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
|
|
|
pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
|
|
|
pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
|
|
|
- logger.info(
|
|
|
- "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
|
|
|
- logger.info(
|
|
|
- "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
|
|
|
- logger.info(
|
|
|
- "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
|
|
|
- logger.info(
|
|
|
- "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
|
|
|
+ logger.info("1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
|
|
|
+ logger.info("2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
|
|
|
+ logger.info("3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
|
|
|
+ logger.info("4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
|
|
|
|
|
|
coe[T]['score_m'] = round(best_score_m, 3)
|
|
|
coe[T]['score_n'] = round(best_score_n, 3)
|
|
@@ -76,6 +67,25 @@ def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
coe[T]['acc_n'] = round(best_coe_n, 3)
|
|
|
logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
|
|
|
|
|
|
+def iterate_his_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
+ """
|
|
|
+ 更新临近时长Δ
|
|
|
+ """
|
|
|
+ T = 'T' + str(point + 1)
|
|
|
+ best_acc, best_hour = 0, 1
|
|
|
+ for hour in np.arange(0.25, 4.25, 0.25):
|
|
|
+ his_window = hour // 0.25
|
|
|
+ pre_data = history_error(pre_data, col_power, col_pre, his_window)
|
|
|
+ req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
|
|
|
+ his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
|
|
|
+
|
|
|
+ if his_fix_acc > best_acc:
|
|
|
+ best_acc = his_fix_acc
|
|
|
+ best_hour = float(round(hour, 2))
|
|
|
+ coe[T]['hour'] = best_hour
|
|
|
+ logger.info(f"{T} 点的最优临近时长:{best_hour}")
|
|
|
+ return pre_data
|
|
|
+
|
|
|
def prepare_request_body(df, col_power, col_pre):
|
|
|
"""
|
|
|
准备请求体,动态保留MongoDB中的所有字段
|
|
@@ -143,15 +153,15 @@ def calculate_acc(api_url, request_body):
|
|
|
print("333333333")
|
|
|
return None
|
|
|
|
|
|
-def history_error(data, col_power, col_pre):
|
|
|
+def history_error(data, col_power, col_pre, his_window):
|
|
|
data['error'] = data[col_power] - data[col_pre]
|
|
|
data['error'] = data['error'].round(2)
|
|
|
data.reset_index(drop=True, inplace=True)
|
|
|
# 用前面5个点的平均error,和象心力相加
|
|
|
- numbers = len(data) - 5
|
|
|
- datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)]
|
|
|
- data_error = [np.mean(d.iloc[0:5, -1]) for d in datas]
|
|
|
- pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0)
|
|
|
+ numbers = len(data) - his_window
|
|
|
+ datas = [data.iloc[x: x+his_window, :].reset_index(drop=True) for x in range(0, numbers)]
|
|
|
+ data_error = [np.mean(d.iloc[0:his_window, -1]) for d in datas]
|
|
|
+ pad_data_error = np.pad(data_error, (his_window, 0), mode='constant', constant_values=0)
|
|
|
data['his_fix'] = data[col_pre] + pad_data_error
|
|
|
data = data.iloc[5:, :].reset_index(drop=True)
|
|
|
data.loc[data[col_pre] <= 0, ['his_fix']] = 0
|
|
@@ -171,10 +181,10 @@ def get_station_cdq_coe():
|
|
|
try:
|
|
|
args = request.values.to_dict()
|
|
|
logger.info(args)
|
|
|
- data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
|
|
|
- pre_data = history_error(data, col_power='realPower', col_pre='dq')
|
|
|
+ data = get_data_from_mongo(args).sort_values(by=args['col_time'], ascending=True)
|
|
|
for point in range(0, 16, 1):
|
|
|
- iterate_coe(pre_data, point, 'realPower', 'dq', coe)
|
|
|
+ pre_data = iterate_his_coe(data, point, args['col_power'], args['col_pre'], coe)
|
|
|
+ iterate_coe(pre_data, point, args['col_power'], args['col_pre'], coe)
|
|
|
success = 1
|
|
|
except Exception as e:
|
|
|
my_exception = traceback.format_exc()
|
|
@@ -203,11 +213,8 @@ if __name__ == "__main__":
|
|
|
# run_code = 0
|
|
|
print("Program starts execution!")
|
|
|
from waitress import serve
|
|
|
-
|
|
|
- serve(
|
|
|
- app,
|
|
|
- host="0.0.0.0",
|
|
|
- port=10123,
|
|
|
- threads=8, # 指定线程数(默认4,根据硬件调整)
|
|
|
- channel_timeout=600 # 连接超时时间(秒)
|
|
|
- )
|
|
|
+ serve(app, host="0.0.0.0", port=10123,
|
|
|
+ threads=8, # 指定线程数(默认4,根据硬件调整)
|
|
|
+ channel_timeout=600 # 连接超时时间(秒)
|
|
|
+ )
|
|
|
+ print("server start!")
|