|
@@ -24,6 +24,18 @@ def put_analysis_report_to_html(args, df_clean, df_predict, df_accuracy):
|
|
label = args['label']
|
|
label = args['label']
|
|
label_pre = args['label_pre']
|
|
label_pre = args['label_pre']
|
|
farmId = args['farmId']
|
|
farmId = args['farmId']
|
|
|
|
+ df_clean = df_clean.applymap(
|
|
|
|
+ lambda x: float(x.to_decimal()) if isinstance(x, Decimal128) else float(x) if isinstance(x,
|
|
|
|
+ numbers.Number) else x).sort_values(
|
|
|
|
+ by=col_time)
|
|
|
|
+ df_predict = df_predict.applymap(
|
|
|
|
+ lambda x: float(x.to_decimal()) if isinstance(x, Decimal128) else float(x) if isinstance(x,
|
|
|
|
+ numbers.Number) else x).sort_values(
|
|
|
|
+ by=col_time)
|
|
|
|
+ df_accuracy = df_accuracy.applymap(
|
|
|
|
+ lambda x: float(x.to_decimal()) if isinstance(x, Decimal128) else float(x) if isinstance(x,
|
|
|
|
+ numbers.Number) else x).sort_values(
|
|
|
|
+ by=col_time)
|
|
total_size = df_clean.shape[0]
|
|
total_size = df_clean.shape[0]
|
|
clean_size = total_size
|
|
clean_size = total_size
|
|
if 'is_limit' in df_clean.columns:
|
|
if 'is_limit' in df_clean.columns:
|
|
@@ -42,8 +54,8 @@ def put_analysis_report_to_html(args, df_clean, df_predict, df_accuracy):
|
|
# -------------------- 实测气象与实际功率散点图--------------------
|
|
# -------------------- 实测气象与实际功率散点图--------------------
|
|
|
|
|
|
# 生成实际功率与辐照度的散点图
|
|
# 生成实际功率与辐照度的散点图
|
|
- # fig_scatter = px.scatter(df_clean, x=col_x_env, y=label, color='is_limit')
|
|
|
|
- fig_scatter = px.scatter(df_clean, x=col_x_env, y=label)
|
|
|
|
|
|
+ fig_scatter = px.scatter(df_clean, x=col_x_env, y=label, color='is_limit')
|
|
|
|
+ # fig_scatter = px.scatter(df_clean, x=col_x_env, y=label)
|
|
# 自定义散点图布局
|
|
# 自定义散点图布局
|
|
fig_scatter.update_layout(
|
|
fig_scatter.update_layout(
|
|
template='seaborn',
|
|
template='seaborn',
|