@@ -57,7 +57,7 @@ def model_training_bp():
model = bp.train_init() if bp.opt.Model['add_train'] else bp.get_keras_model(bp.opt)
if bp.opt.Model['add_train']:
if model:
- feas = json.loads(bp.model_params).get('features', dh.opt.features)
+ feas = json.loads(bp.model_params)['features']
if set(feas).issubset(set(dh.opt.features)):
dh.opt.features = list(feas)
train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
@@ -59,7 +59,7 @@ def model_training_bp():
model = cnn.train_init() if cnn.opt.Model['add_train'] else cnn.get_keras_model(cnn.opt)
if cnn.opt.Model['add_train']:
- feas = json.loads(cnn.model_params).get('features', dh.opt.features)
+ feas = json.loads(cnn.model_params)['features']
@@ -56,7 +56,7 @@ def model_training_bp():
model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
if ts.opt.Model['add_train']:
- feas = json.loads(ts.model_params).get('features', dh.opt.features)
+ feas = json.loads(ts.model_params)['features']
@@ -56,7 +56,7 @@ def model_training_test():
train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(