|
@@ -0,0 +1,273 @@
|
|
|
+from pymongo import MongoClient, UpdateOne, DESCENDING
|
|
|
+import pandas as pd
|
|
|
+from sqlalchemy import create_engine
|
|
|
+import pickle
|
|
|
+from io import BytesIO
|
|
|
+import joblib
|
|
|
+import h5py
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+def get_data_from_mongo(args):
|
|
|
+ mongodb_connection = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/"
|
|
|
+ mongodb_database = args['mongodb_database']
|
|
|
+ mongodb_read_table = args['mongodb_read_table']
|
|
|
+ query_dict = {}
|
|
|
+ if 'timeBegin' in args.keys():
|
|
|
+ timeBegin = args['timeBegin']
|
|
|
+ query_dict.update({"$gte": timeBegin})
|
|
|
+ if 'timeEnd' in args.keys():
|
|
|
+ timeEnd = args['timeEnd']
|
|
|
+ query_dict.update({"$lte": timeEnd})
|
|
|
+
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ collection = db[mongodb_read_table] # 集合名称
|
|
|
+ if len(query_dict) != 0:
|
|
|
+ query = {"dateTime": query_dict}
|
|
|
+ cursor = collection.find(query)
|
|
|
+ else:
|
|
|
+ cursor = collection.find()
|
|
|
+ data = list(cursor)
|
|
|
+ df = pd.DataFrame(data)
|
|
|
+ # 4. 删除 _id 字段(可选)
|
|
|
+ if '_id' in df.columns:
|
|
|
+ df = df.drop(columns=['_id'])
|
|
|
+ client.close()
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
+def get_df_list_from_mongo(args):
|
|
|
+ mongodb_connection,mongodb_database,mongodb_read_table = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_read_table'].split(',')
|
|
|
+ df_list = []
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ for table in mongodb_read_table:
|
|
|
+ collection = db[table] # 集合名称
|
|
|
+ data_from_db = collection.find() # 这会返回一个游标(cursor)
|
|
|
+ # 将游标转换为列表,并创建 pandas DataFrame
|
|
|
+ df = pd.DataFrame(list(data_from_db))
|
|
|
+ if '_id' in df.columns:
|
|
|
+ df = df.drop(columns=['_id'])
|
|
|
+ df_list.append(df)
|
|
|
+ client.close()
|
|
|
+ return df_list
|
|
|
+
|
|
|
+def insert_data_into_mongo(res_df, args):
|
|
|
+ """
|
|
|
+ 插入数据到 MongoDB 集合中,可以选择覆盖、追加或按指定的 key 进行更新插入。
|
|
|
+
|
|
|
+ 参数:
|
|
|
+ - res_df: 要插入的 DataFrame 数据
|
|
|
+ - args: 包含 MongoDB 数据库和集合名称的字典
|
|
|
+ - overwrite: 布尔值,True 表示覆盖,False 表示追加
|
|
|
+ - update_keys: 列表,指定用于匹配的 key 列,如果存在则更新,否则插入 'col1','col2'
|
|
|
+ """
|
|
|
+ mongodb_connection = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/"
|
|
|
+ mongodb_database = args['mongodb_database']
|
|
|
+ mongodb_write_table = args['mongodb_write_table']
|
|
|
+ overwrite = 1
|
|
|
+ update_keys = None
|
|
|
+ if 'overwrite' in args.keys():
|
|
|
+ overwrite = int(args['overwrite'])
|
|
|
+ if 'update_keys' in args.keys():
|
|
|
+ update_keys = args['update_keys'].split(',')
|
|
|
+
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ collection = db[mongodb_write_table]
|
|
|
+
|
|
|
+ # 覆盖模式:删除现有集合
|
|
|
+ if overwrite:
|
|
|
+ if mongodb_write_table in db.list_collection_names():
|
|
|
+ collection.drop()
|
|
|
+ print(f"Collection '{mongodb_write_table}' already exists, deleted successfully!")
|
|
|
+
|
|
|
+ # 将 DataFrame 转为字典格式
|
|
|
+ data_dict = res_df.to_dict("records") # 每一行作为一个字典
|
|
|
+
|
|
|
+ # 如果没有数据,直接返回
|
|
|
+ if not data_dict:
|
|
|
+ print("No data to insert.")
|
|
|
+ return
|
|
|
+
|
|
|
+ # 如果指定了 update_keys,则执行 upsert(更新或插入)
|
|
|
+ if update_keys and not overwrite:
|
|
|
+ operations = []
|
|
|
+ for record in data_dict:
|
|
|
+ # 构建查询条件,用于匹配要更新的文档
|
|
|
+ query = {key: record[key] for key in update_keys}
|
|
|
+ operations.append(UpdateOne(query, {'$set': record}, upsert=True))
|
|
|
+
|
|
|
+ # 批量执行更新/插入操作
|
|
|
+ if operations:
|
|
|
+ result = collection.bulk_write(operations)
|
|
|
+ print(f"Matched: {result.matched_count}, Upserts: {result.upserted_count}")
|
|
|
+ else:
|
|
|
+ # 追加模式:直接插入新数据
|
|
|
+ collection.insert_many(data_dict)
|
|
|
+ print("Data inserted successfully!")
|
|
|
+
|
|
|
+
|
|
|
+def get_data_fromMysql(params):
|
|
|
+ mysql_conn = params['mysql_conn']
|
|
|
+ query_sql = params['query_sql']
|
|
|
+ #数据库读取实测气象
|
|
|
+ engine = create_engine(f"mysql+pymysql://{mysql_conn}")
|
|
|
+ # 定义SQL查询
|
|
|
+ env_df = pd.read_sql_query(query_sql, engine)
|
|
|
+ return env_df
|
|
|
+
|
|
|
+
|
|
|
+def insert_pickle_model_into_mongo(model, args):
|
|
|
+ mongodb_connection, mongodb_database, mongodb_write_table, model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/", \
|
|
|
+ args['mongodb_database'], args['mongodb_write_table'], args['model_name']
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ # 序列化模型
|
|
|
+ model_bytes = pickle.dumps(model)
|
|
|
+ model_data = {
|
|
|
+ 'model_name': model_name,
|
|
|
+ 'model': model_bytes, # 将模型字节流存入数据库
|
|
|
+ }
|
|
|
+ print('Training completed!')
|
|
|
+
|
|
|
+ if mongodb_write_table in db.list_collection_names():
|
|
|
+ db[mongodb_write_table].drop()
|
|
|
+ print(f"Collection '{mongodb_write_table} already exist, deleted successfully!")
|
|
|
+ collection = db[mongodb_write_table] # 集合名称
|
|
|
+ collection.insert_one(model_data)
|
|
|
+ print("model inserted successfully!")
|
|
|
+
|
|
|
+
|
|
|
+def insert_h5_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args):
|
|
|
+ mongodb_connection,mongodb_database,scaler_table,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
|
|
|
+ args['mongodb_database'],args['scaler_table'],args['model_table'],args['model_name'])
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ if scaler_table in db.list_collection_names():
|
|
|
+ db[scaler_table].drop()
|
|
|
+ print(f"Collection '{scaler_table} already exist, deleted successfully!")
|
|
|
+ collection = db[scaler_table] # 集合名称
|
|
|
+ # Save the scalers in MongoDB as binary data
|
|
|
+ collection.insert_one({
|
|
|
+ "feature_scaler": feature_scaler_bytes.read(),
|
|
|
+ "target_scaler": target_scaler_bytes.read()
|
|
|
+ })
|
|
|
+ print("scaler_model inserted successfully!")
|
|
|
+ if model_table in db.list_collection_names():
|
|
|
+ db[model_table].drop()
|
|
|
+ print(f"Collection '{model_table} already exist, deleted successfully!")
|
|
|
+ model_table = db[model_table]
|
|
|
+ # 创建 BytesIO 缓冲区
|
|
|
+ model_buffer = BytesIO()
|
|
|
+ # 将模型保存为 HDF5 格式到内存 (BytesIO)
|
|
|
+ model.save(model_buffer, save_format='h5')
|
|
|
+ # 将指针移到缓冲区的起始位置
|
|
|
+ model_buffer.seek(0)
|
|
|
+ # 获取模型的二进制数据
|
|
|
+ model_data = model_buffer.read()
|
|
|
+ # 将模型保存到 MongoDB
|
|
|
+ model_table.insert_one({
|
|
|
+ "model_name": model_name,
|
|
|
+ "model_data": model_data
|
|
|
+ })
|
|
|
+ print("模型成功保存到 MongoDB!")
|
|
|
+
|
|
|
+def insert_trained_model_into_mongo(model, args):
|
|
|
+ mongodb_connection,mongodb_database,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
|
|
|
+ args['mongodb_database'],args['model_table'],args['model_name'])
|
|
|
+
|
|
|
+ gen_time, params_json, descr = args['gen_time'], args['params'], args['descr']
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ if model_table in db.list_collection_names():
|
|
|
+ db[model_table].drop()
|
|
|
+ print(f"Collection '{model_table} already exist, deleted successfully!")
|
|
|
+ model_table = db[model_table]
|
|
|
+ # 创建 BytesIO 缓冲区
|
|
|
+ model_buffer = BytesIO()
|
|
|
+ # 将模型保存为 HDF5 格式到内存 (BytesIO)
|
|
|
+ model.save(model_buffer, save_format='h5')
|
|
|
+ # 将指针移到缓冲区的起始位置
|
|
|
+ model_buffer.seek(0)
|
|
|
+ # 获取模型的二进制数据
|
|
|
+ model_data = model_buffer.read()
|
|
|
+ # 将模型保存到 MongoDB
|
|
|
+ model_table.insert_one({
|
|
|
+ "model_name": model_name,
|
|
|
+ "model_data": model_data,
|
|
|
+ "gen_time": gen_time,
|
|
|
+ "params": params_json,
|
|
|
+ "descr": descr
|
|
|
+ })
|
|
|
+ print("模型成功保存到 MongoDB!")
|
|
|
+
|
|
|
+def insert_scaler_model_into_mongo(feature_scaler_bytes, scaled_target_bytes, args):
|
|
|
+ mongodb_connection,mongodb_database,scaler_table,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
|
|
|
+ args['mongodb_database'],args['scaler_table'],args['model_table'],args['model_name'])
|
|
|
+ gen_time = args['gen_time']
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ if scaler_table in db.list_collection_names():
|
|
|
+ db[scaler_table].drop()
|
|
|
+ print(f"Collection '{scaler_table} already exist, deleted successfully!")
|
|
|
+ collection = db[scaler_table] # 集合名称
|
|
|
+ # Save the scalers in MongoDB as binary data
|
|
|
+ collection.insert_one({
|
|
|
+ "model_name": model_name,
|
|
|
+ "gent_time": gen_time,
|
|
|
+ "feature_scaler": feature_scaler_bytes.read(),
|
|
|
+ "target_scaler": scaled_target_bytes.read()
|
|
|
+ })
|
|
|
+ print("scaler_model inserted successfully!")
|
|
|
+
|
|
|
+
|
|
|
+def get_h5_model_from_mongo(args, custom=None):
|
|
|
+ mongodb_connection,mongodb_database,model_table,model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['model_table'],args['model_name']
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ collection = db[model_table] # 集合名称
|
|
|
+
|
|
|
+ # 查询 MongoDB 获取模型数据
|
|
|
+ model_doc = collection.find_one({"model_name": model_name}, sort=[('gen_time', DESCENDING)])
|
|
|
+ if model_doc:
|
|
|
+ model_data = model_doc['model_data'] # 获取模型的二进制数据
|
|
|
+ # 将二进制数据加载到 BytesIO 缓冲区
|
|
|
+ model_buffer = BytesIO(model_data)
|
|
|
+ # 从缓冲区加载模型
|
|
|
+ # 使用 h5py 和 BytesIO 从内存中加载模型
|
|
|
+ with h5py.File(model_buffer, 'r') as f:
|
|
|
+ model = tf.keras.models.load_model(f, custom_objects=custom)
|
|
|
+ print(f"{model_name}模型成功从 MongoDB 加载!")
|
|
|
+ client.close()
|
|
|
+ return model
|
|
|
+ else:
|
|
|
+ print(f"未找到model_name为 {model_name} 的模型。")
|
|
|
+ client.close()
|
|
|
+ return None
|
|
|
+
|
|
|
+
|
|
|
+def get_scaler_model_from_mongo(args, only_feature_scaler=False):
|
|
|
+ """
|
|
|
+ 根据模 型名称版本 和 生成时间 获取模型
|
|
|
+ """
|
|
|
+ mongodb_connection, mongodb_database, scaler_table, = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/", args['mongodb_database'], args['scaler_table'])
|
|
|
+ model_name, gen_time = args['model_name'], args['gent_time']
|
|
|
+ client = MongoClient(mongodb_connection)
|
|
|
+ # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
|
|
|
+ db = client[mongodb_database]
|
|
|
+ collection = db[scaler_table] # 集合名称
|
|
|
+ # Retrieve the scalers from MongoDB
|
|
|
+ scaler_doc = collection.find_one({"model_name": model_name, "gen_time": gen_time})
|
|
|
+ # Deserialize the scalers
|
|
|
+
|
|
|
+ feature_scaler_bytes = BytesIO(scaler_doc["feature_scaler"])
|
|
|
+ feature_scaler = joblib.load(feature_scaler_bytes)
|
|
|
+ if only_feature_scaler:
|
|
|
+ return feature_scaler
|
|
|
+ target_scaler_bytes = BytesIO(scaler_doc["target_scaler"])
|
|
|
+ target_scaler = joblib.load(target_scaler_bytes)
|
|
|
+ return feature_scaler,target_scaler
|