|
@@ -48,11 +48,23 @@ def model_training_test():
|
|
|
# ------------ 获取数据,预处理训练数据 ------------
|
|
|
train_data = get_data_from_mongo(args)
|
|
|
train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
|
|
|
- # ------------ 训练模型,保存模型 ------------
|
|
|
- ts.opt.Model['input_size'] = train_x.shape[2]
|
|
|
ts.opt.cap = round(scaled_cap, 2)
|
|
|
- ts_model = ts.training([train_x, train_y, valid_x, valid_y])
|
|
|
+ ts.opt.Model['input_size'] = len(dh.opt.features)
|
|
|
+ # ------------ 训练模型,保存模型 ------------
|
|
|
+ # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
|
|
|
+ # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
|
|
|
+ model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
|
|
|
+ if ts.opt.Model['add_train'] and model is not False:
|
|
|
+ feas = json.loads(ts.model_params).get('features', args['features'])
|
|
|
+ if set(feas).issubset(set(dh.opt.features)):
|
|
|
+ dh.opt.features = list(feas)
|
|
|
+ train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(
|
|
|
+ train_data)
|
|
|
+ else:
|
|
|
+ model = ts.get_keras_model(ts.opt)
|
|
|
+ logger.info("训练数据特征,不满足,加强训练模型特征")
|
|
|
|
|
|
+ ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
|
|
|
args['params'] = json.dumps(args)
|
|
|
args['descr'] = '测试'
|
|
|
args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|