|
@@ -25,7 +25,7 @@ app = Flask('tf_test_pre——service')
|
|
|
|
|
|
with app.app_context():
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
- with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
|
|
|
+ with open(os.path.join(current_dir, 'test.yaml'), 'r', encoding='utf-8') as f:
|
|
|
args = yaml.safe_load(f)
|
|
|
|
|
|
dh = DataHandler(logger, args)
|
|
@@ -53,7 +53,7 @@ def model_prediction_test():
|
|
|
try:
|
|
|
pre_data = get_data_from_mongo(args)
|
|
|
feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
|
|
|
- ts.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
|
|
|
+ ts.opt.cap = round(target_scaler.transform(np.array([[float(args['cap'])]]))[0, 0], 2)
|
|
|
|
|
|
ts.get_model(args)
|
|
|
dh.opt.features = json.loads(ts.model_params).get('features', args['features'])
|
|
@@ -78,11 +78,9 @@ def model_prediction_test():
|
|
|
pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
|
|
|
res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
|
|
|
pre_data = pre_data[res_cols]
|
|
|
-
|
|
|
pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
|
- pre_data.loc[pre_data['power_forecast'] > args['cap'], 'power_forecast'] = args['cap']
|
|
|
+ pre_data.loc[pre_data['power_forecast'] > float(args['cap']), 'power_forecast'] = float(args['cap'])
|
|
|
pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
|
|
|
-
|
|
|
insert_data_into_mongo(pre_data, args)
|
|
|
success = 1
|
|
|
except Exception as e:
|