David 3 ay önce
ebeveyn
işleme
57b94acf79

+ 4 - 4
data_processing/data_operation/data_handler.py

@@ -195,10 +195,10 @@ class DataHandler(object):
         train_scaler = MinMaxScaler(feature_range=(0, 1))
         target_scaler = MinMaxScaler(feature_range=(0, 1))
         # 标准化特征和目标
-        scaled_train_data = train_scaler.fit_transform(train_data_cleaned[features])
+        scaled_train_data = train_scaler.fit_transform(train_data_cleaned[self.opt.features])
         scaled_target = target_scaler.fit_transform(train_data_cleaned[[target]])
         scaled_cap = target_scaler.transform(np.array([[self.opt.cap]]))[0,0]
-        train_data_cleaned[features] = scaled_train_data
+        train_data_cleaned[self.opt.features] = scaled_train_data
         train_data_cleaned[[target]] = scaled_target
         # 3.缺值补值
         train_datas = self.fill_train_data(train_data_cleaned, col_time)
@@ -212,10 +212,10 @@ class DataHandler(object):
 
         if bp_data:
             train_data = pd.concat(train_datas, axis=0)
-            train_x, valid_x, train_y, valid_y = self.train_valid_split(train_data[features].values, train_data[target].values, valid_rate=self.opt.Model["valid_data_rate"], shuffle=self.opt.Model['shuffle_train_data'])
+            train_x, valid_x, train_y, valid_y = self.train_valid_split(train_data[self.opt.features].values, train_data[target].values, valid_rate=self.opt.Model["valid_data_rate"], shuffle=self.opt.Model['shuffle_train_data'])
             train_x, valid_x, train_y, valid_y =  np.array(train_x), np.array(valid_x), np.array(train_y), np.array(valid_y)
         else:
-            train_x, valid_x, train_y, valid_y = self.get_train_data(train_datas, col_time, features, target)
+            train_x, valid_x, train_y, valid_y = self.get_train_data(train_datas, col_time, self.opt.features, target)
         return train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap
 
     def pre_data_handler(self, data, feature_scaler, bp_data=False):