|
@@ -0,0 +1,134 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding:utf-8 -*-
|
|
|
+# @FileName :tf_lstm_pre.py
|
|
|
+# @Time :2025/2/13 10:52
|
|
|
+# @Author :David
|
|
|
+# @Company: shenyang JY
|
|
|
+import json, copy
|
|
|
+import numpy as np
|
|
|
+from flask import Flask, request, g
|
|
|
+import logging, argparse, traceback
|
|
|
+from common.database_dml_koi import *
|
|
|
+from common.processing_data_common import missing_features, str_to_list
|
|
|
+from data_processing.data_operation.data_handler import DataHandler
|
|
|
+from threading import Lock
|
|
|
+import time, yaml
|
|
|
+model_lock = Lock()
|
|
|
+from itertools import chain
|
|
|
+from common.logs import Log
|
|
|
+from tf_lstm import TSHandler
|
|
|
+# logger = Log('tf_bp').logger()
|
|
|
+logger = Log('tf_test').logger
|
|
|
+np.random.seed(42) # NumPy随机种子
|
|
|
+# tf.set_random_seed(42) # TensorFlow随机种子
|
|
|
+app = Flask('tf_test_pre——service')
|
|
|
+
|
|
|
+with app.app_context():
|
|
|
+ current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
+ with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
|
|
|
+ args = yaml.safe_load(f)
|
|
|
+
|
|
|
+ dh = DataHandler(logger, args)
|
|
|
+ ts = TSHandler(logger, args)
|
|
|
+
|
|
|
+@app.before_request
|
|
|
+def update_config():
|
|
|
+ # ------------ 整理参数,整合请求参数 ------------
|
|
|
+ args_dict = request.values.to_dict()
|
|
|
+ args_dict['features'] = args_dict['features'].split(',')
|
|
|
+ args.update(args_dict)
|
|
|
+ opt = argparse.Namespace(**args)
|
|
|
+ dh.opt = opt
|
|
|
+ ts.opt = opt
|
|
|
+ g.opt = opt
|
|
|
+ logger.info(args)
|
|
|
+
|
|
|
+@app.route('/nn_test_predict', methods=['POST'])
|
|
|
+def model_prediction_test():
|
|
|
+ # 获取程序开始时间
|
|
|
+ start_time = time.time()
|
|
|
+ result = {}
|
|
|
+ success = 0
|
|
|
+ print("Program starts execution!")
|
|
|
+ try:
|
|
|
+ pre_data = get_data_from_mongo(args)
|
|
|
+ feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
|
|
|
+ scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
|
|
|
+ ts.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
|
|
|
+ ts.get_model(args)
|
|
|
+ res = list(chain.from_iterable(target_scaler.inverse_transform(ts.predict(scaled_pre_x))))
|
|
|
+ pre_data['farm_id'] = args.get('farm_id', 'null')
|
|
|
+ if args.get('algorithm_test', 0):
|
|
|
+ pre_data[args['model_name']] = res[:len(pre_data)]
|
|
|
+ pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
|
|
|
+ pre_data = pre_data[['dateTime', 'farm_id', args['target'], args['model_name'], 'dq']]
|
|
|
+ pre_data = pre_data.melt(id_vars=['dateTime', 'farm_id', args['target']], var_name='model', value_name='power_forecast')
|
|
|
+ res_cols = ['dateTime', 'power_forecast', 'farm_id', args['target'], 'model']
|
|
|
+ if 'howLongAgo' in args:
|
|
|
+ pre_data['howLongAgo'] = int(args['howLongAgo'])
|
|
|
+ res_cols += ['howLongAgo']
|
|
|
+ else:
|
|
|
+ pre_data['cdq'] = args.get('cdq', 1)
|
|
|
+ pre_data['dq'] = args.get('dq', 1)
|
|
|
+ pre_data['zq'] = args.get('zq', 1)
|
|
|
+ pre_data['power_forecast'] = res[:len(pre_data)]
|
|
|
+ pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
|
|
|
+ res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
|
|
|
+ pre_data = pre_data[res_cols]
|
|
|
+
|
|
|
+ pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
|
+ pre_data.loc[pre_data['power_forecast'] > args['cap'], 'power_forecast'] = args['cap']
|
|
|
+ pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
|
|
|
+
|
|
|
+ insert_data_into_mongo(pre_data, args)
|
|
|
+ success = 1
|
|
|
+ except Exception as e:
|
|
|
+ my_exception = traceback.format_exc()
|
|
|
+ my_exception.replace("\n", "\t")
|
|
|
+ result['msg'] = my_exception
|
|
|
+ end_time = time.time()
|
|
|
+
|
|
|
+ result['success'] = success
|
|
|
+ result['args'] = args
|
|
|
+ result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
|
|
|
+ result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
|
|
|
+ print("Program execution ends!")
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ print("Program starts execution!")
|
|
|
+ from waitress import serve
|
|
|
+ serve(app, host="0.0.0.0", port=10114)
|
|
|
+ print("server start!")
|
|
|
+
|
|
|
+ # ------------------------测试代码------------------------
|
|
|
+ # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
+ # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
|
|
|
+ # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
+ # args_dict['features'] = args_dict['features'].split(',')
|
|
|
+ # arguments.update(args_dict)
|
|
|
+ # dh = DataHandler(logger, arguments)
|
|
|
+ # ts = TSHandler(logger)
|
|
|
+ # opt = argparse.Namespace(**arguments)
|
|
|
+ #
|
|
|
+ # opt.Model['input_size'] = len(opt.features)
|
|
|
+ # pre_data = get_data_from_mongo(args_dict)
|
|
|
+ # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
|
|
|
+ # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
|
|
|
+ # ts.get_model(arguments)
|
|
|
+ # result = ts.predict(pre_x)
|
|
|
+ # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
|
|
|
+ # pre_data['power_forecast'] = result1[:len(pre_data)]
|
|
|
+ # pre_data['farm_id'] = 'J00083'
|
|
|
+ # pre_data['cdq'] = 1
|
|
|
+ # pre_data['dq'] = 1
|
|
|
+ # pre_data['zq'] = 1
|
|
|
+ # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
|
|
|
+ # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
|
|
|
+ #
|
|
|
+ # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
|
|
|
+ # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
|
|
|
+ # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
|
|
|
+ #
|
|
|
+ # insert_data_into_mongo(pre_data, arguments)
|