|
@@ -7,14 +7,13 @@
|
|
import os, requests, json, time, traceback
|
|
import os, requests, json, time, traceback
|
|
import pandas as pd
|
|
import pandas as pd
|
|
import numpy as np
|
|
import numpy as np
|
|
-from common.database_dml import get_data_from_mongo
|
|
|
|
-from pymongo import MongoClient
|
|
|
|
-from flask import Flask,request,jsonify, g
|
|
|
|
|
|
+from bayes_opt import BayesianOptimization
|
|
|
|
+from common.database_dml_koi import get_data_from_mongo
|
|
|
|
+from flask import Flask, request, g
|
|
from datetime import datetime
|
|
from datetime import datetime
|
|
-# from common.logs import Log
|
|
|
|
-# logger = Log('post-processing').logger
|
|
|
|
-from logging import getLogger
|
|
|
|
-logger = getLogger('xx')
|
|
|
|
|
|
+from common.logs import Log
|
|
|
|
+
|
|
|
|
+logger = Log('post-processing').logger
|
|
current_path = os.path.dirname(__file__)
|
|
current_path = os.path.dirname(__file__)
|
|
API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
|
|
API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
|
|
app = Flask('cdq_coe_gen——service')
|
|
app = Flask('cdq_coe_gen——service')
|
|
@@ -23,25 +22,29 @@ app = Flask('cdq_coe_gen——service')
|
|
@app.before_request
|
|
@app.before_request
|
|
def update_config():
|
|
def update_config():
|
|
# ------------ 整理参数,整合请求参数 ------------
|
|
# ------------ 整理参数,整合请求参数 ------------
|
|
- g.coe = {}
|
|
|
|
|
|
+ g.coe = {'T'+str(x):{} for x in range(1, 17)}
|
|
|
|
|
|
|
|
|
|
-def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
|
|
|
+def iterate_coe_simple(pre_data, point, config, coe):
|
|
"""
|
|
"""
|
|
更新16个点系数
|
|
更新16个点系数
|
|
"""
|
|
"""
|
|
T = 'T' + str(point + 1)
|
|
T = 'T' + str(point + 1)
|
|
|
|
+ col_pre = config['col_pre']
|
|
best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
|
|
best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
|
|
- best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0
|
|
|
|
- req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
|
|
|
|
- req_dq = prepare_request_body(pre_data, col_power, col_pre)
|
|
|
|
|
|
+ best_score, best_acc1, best_score_m, best_score_n = 999, 0, 999, 0
|
|
|
|
+
|
|
|
|
+ pre_data = history_error(pre_data, config['col_power'], config['col_pre'], int(coe[T]['hour']//0.25))
|
|
|
|
+ pre_data = curve_limited(pre_data, config, 'his_fix')
|
|
|
|
+ req_his_fix = prepare_request_body(pre_data, config, 'his_fix')
|
|
|
|
+ req_dq = prepare_request_body(pre_data, config, col_pre)
|
|
|
|
|
|
his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
|
|
his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
|
|
dq_acc, dq_score = calculate_acc(API_URL, req_dq)
|
|
dq_acc, dq_score = calculate_acc(API_URL, req_dq)
|
|
for i in range(5, 210):
|
|
for i in range(5, 210):
|
|
for j in range(5, 210):
|
|
for j in range(5, 210):
|
|
pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3)
|
|
pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3)
|
|
- req_new = prepare_request_body(pre_data, col_power, 'new')
|
|
|
|
|
|
+ req_new = prepare_request_body(pre_data, config, 'new')
|
|
acc, acc_score = calculate_acc(API_URL, req_new)
|
|
acc, acc_score = calculate_acc(API_URL, req_new)
|
|
|
|
|
|
if acc > best_acc:
|
|
if acc > best_acc:
|
|
@@ -57,18 +60,10 @@ def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
|
|
|
|
pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
|
|
pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
|
|
pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
|
|
pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
|
|
- logger.info(
|
|
|
|
- "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
|
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
|
|
|
|
- logger.info(
|
|
|
|
- "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
|
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
|
|
|
|
- logger.info(
|
|
|
|
- "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
|
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
|
|
|
|
- logger.info(
|
|
|
|
- "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
|
|
|
|
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
|
|
|
|
|
|
+ logger.info("1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
|
|
|
|
+ logger.info("2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
|
|
|
|
+ logger.info("3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
|
|
|
|
+ logger.info("4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
|
|
|
|
|
|
coe[T]['score_m'] = round(best_score_m, 3)
|
|
coe[T]['score_m'] = round(best_score_m, 3)
|
|
coe[T]['score_n'] = round(best_score_n, 3)
|
|
coe[T]['score_n'] = round(best_score_n, 3)
|
|
@@ -76,38 +71,124 @@ def iterate_coe(pre_data, point, col_power, col_pre, coe):
|
|
coe[T]['acc_n'] = round(best_coe_n, 3)
|
|
coe[T]['acc_n'] = round(best_coe_n, 3)
|
|
logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
|
|
logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
|
|
|
|
|
|
-def prepare_request_body(df, col_power, col_pre):
|
|
|
|
|
|
+
|
|
|
|
+def iterate_coe(pre_data, point, config, coe):
|
|
|
|
+ """使用贝叶斯优化进行系数寻优"""
|
|
|
|
+ T = 'T' + str(point + 1)
|
|
|
|
+ col_pre = config['col_pre']
|
|
|
|
+ col_time = config['col_time']
|
|
|
|
+
|
|
|
|
+ # 历史数据处理(保持原逻辑)
|
|
|
|
+ pre_data = history_error(pre_data, config['col_power'], config['col_pre'], int(coe[T]['hour'] // 0.25))
|
|
|
|
+ pre_data = curve_limited(pre_data, config, 'his_fix')
|
|
|
|
+ req_his_fix = prepare_request_body(pre_data, config, 'his_fix')
|
|
|
|
+ req_dq = prepare_request_body(pre_data, config, col_pre)
|
|
|
|
+
|
|
|
|
+ # 获取基准值(保持原逻辑)
|
|
|
|
+ his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
|
|
|
|
+ dq_acc, dq_score = calculate_acc(API_URL, req_dq)
|
|
|
|
+
|
|
|
|
+ # 定义贝叶斯优化目标函数
|
|
|
|
+ def evaluate_coefficients(m, n):
|
|
|
|
+ """评估函数返回准确率和考核分的元组"""
|
|
|
|
+ local_data = pre_data.copy()
|
|
|
|
+ local_data["new"] = round(m * local_data[col_pre] + n * local_data['his_fix'], 3)
|
|
|
|
+ local_data = curve_limited(local_data, config, 'new')
|
|
|
|
+ req_new = prepare_request_body(local_data, config, 'new')
|
|
|
|
+ acc, score = calculate_acc(API_URL, req_new)
|
|
|
|
+ return acc, score
|
|
|
|
+
|
|
|
|
+ # 优化准确率
|
|
|
|
+ def acc_optimizer(m, n):
|
|
|
|
+ acc, _ = evaluate_coefficients(m, n)
|
|
|
|
+ return acc
|
|
|
|
+
|
|
|
|
+ # 优化考核分
|
|
|
|
+ def score_optimizer(m, n):
|
|
|
|
+ _, score = evaluate_coefficients(m, n)
|
|
|
|
+ return -score # 取负数因为要最大化负分即最小化原分数
|
|
|
|
+
|
|
|
|
+ # 参数空间(保持原参数范围)
|
|
|
|
+ pbounds = {
|
|
|
|
+ 'm': (5 / 170, 210 / 170), # 原始范围映射到[0.0294, 1.235]
|
|
|
|
+ 'n': (5 / 170, 210 / 170)
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ # 执行准确率优化
|
|
|
|
+ acc_bo = BayesianOptimization(f=acc_optimizer, pbounds=pbounds, random_state=42)
|
|
|
|
+ acc_bo.maximize(init_points=70, n_iter=400) # 增大初始点和迭代次数,捕捉可能的多峰结构
|
|
|
|
+ best_acc_params = acc_bo.max['params']
|
|
|
|
+ best_coe_m, best_coe_n = best_acc_params['m'], best_acc_params['n']
|
|
|
|
+ best_acc = acc_bo.max['target']
|
|
|
|
+
|
|
|
|
+ # 执行考核分优化
|
|
|
|
+ # score_bo = BayesianOptimization(f=score_optimizer, pbounds=pbounds, random_state=42)
|
|
|
|
+ # score_bo.maximize(init_points=10, n_iter=20)
|
|
|
|
+ # best_score_params = score_bo.max['params']
|
|
|
|
+ # best_score_m, best_score_n = best_score_params['m'], best_score_params['n']
|
|
|
|
+ # best_score = -score_bo.max['target'] # 恢复原始分数
|
|
|
|
+
|
|
|
|
+ # 应用最优系数(保持原处理逻辑)
|
|
|
|
+ pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
|
|
|
|
+ # pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
|
|
|
|
+
|
|
|
|
+ # 记录日志(保持原格式)
|
|
|
|
+ logger.info("过去{} - {}的短期的准确率:{:.4f},历史功率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f}".format(pre_data[col_time][0], pre_data[col_time].iloc[-1], dq_acc, his_fix_acc, T, best_acc))
|
|
|
|
+
|
|
|
|
+ # 更新系数表(保持原逻辑)
|
|
|
|
+ coe[T].update({
|
|
|
|
+ # 'score_m': round(best_score_m, 3),
|
|
|
|
+ # 'score_n': round(best_score_n, 3),
|
|
|
|
+ 'acc_m': round(best_coe_m, 3),
|
|
|
|
+ 'acc_n': round(best_coe_n, 3)
|
|
|
|
+ })
|
|
|
|
+ logger.info("贝叶斯优化后,最终调整的系数为:{}".format(coe))
|
|
|
|
+
|
|
|
|
+def iterate_his_coe(pre_data, point, config, coe):
|
|
|
|
+ """
|
|
|
|
+ 更新临近时长Δ
|
|
|
|
+ """
|
|
|
|
+ T = 'T' + str(point + 1)
|
|
|
|
+ best_acc, best_hour = 0, 1
|
|
|
|
+ for hour in np.arange(0.25, 4.25, 0.25):
|
|
|
|
+ data = pre_data.copy()
|
|
|
|
+ his_window = int(hour // 0.25)
|
|
|
|
+ pre_data_f = history_error(data, config['col_power'], config['col_pre'], his_window)
|
|
|
|
+ pre_data_f = curve_limited(pre_data_f, config, 'his_fix')
|
|
|
|
+ req_his_fix = prepare_request_body(pre_data_f, config, 'his_fix')
|
|
|
|
+ his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
|
|
|
|
+
|
|
|
|
+ if his_fix_acc > best_acc:
|
|
|
|
+ best_acc = his_fix_acc
|
|
|
|
+ best_hour = float(round(hour, 2))
|
|
|
|
+ coe[T]['hour'] = best_hour
|
|
|
|
+ logger.info(f"{T} 点的最优临近时长:{best_hour}")
|
|
|
|
+
|
|
|
|
+def prepare_request_body(df, config, predict):
|
|
"""
|
|
"""
|
|
准备请求体,动态保留MongoDB中的所有字段
|
|
准备请求体,动态保留MongoDB中的所有字段
|
|
"""
|
|
"""
|
|
data = df.copy()
|
|
data = df.copy()
|
|
# 转换时间格式为字符串
|
|
# 转换时间格式为字符串
|
|
- if 'dateTime' in data.columns and isinstance(data['dateTime'].iloc[0], datetime):
|
|
|
|
- data['dateTime'] = data['dateTime'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
- data['model'] = col_pre
|
|
|
|
- # 排除不需要的字段(如果有)
|
|
|
|
- exclude_fields = ['_id'] # 通常排除MongoDB的默认_id字段
|
|
|
|
-
|
|
|
|
- # 获取所有字段名(排除不需要的字段)
|
|
|
|
- available_fields = [col for col in data.columns if col not in exclude_fields]
|
|
|
|
-
|
|
|
|
- # 转换为记录列表(保留所有字段)
|
|
|
|
- data = data[available_fields].to_dict('records')
|
|
|
|
-
|
|
|
|
|
|
+ if config['col_time'] in data.columns and isinstance(data[config['col_time']].iloc[0], datetime):
|
|
|
|
+ data[config['col_time'] ] = data[config['col_time'] ].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
|
+ data['model'] = predict
|
|
|
|
+ # 保留必要的字段
|
|
|
|
+ data = data[[config['col_time'], config['col_power'], predict, 'model']].to_dict('records')
|
|
# 构造请求体(固定部分+动态数据部分)
|
|
# 构造请求体(固定部分+动态数据部分)
|
|
request_body = {
|
|
request_body = {
|
|
- "stationCode": "J00600",
|
|
|
|
- "realPowerColumn": col_power,
|
|
|
|
- "ablePowerColumn": col_power,
|
|
|
|
- "predictPowerColumn": col_pre,
|
|
|
|
- "inStalledCapacityName": 153,
|
|
|
|
|
|
+ "stationCode": config['stationCode'],
|
|
|
|
+ "realPowerColumn": config['col_power'],
|
|
|
|
+ "ablePowerColumn": config['col_power'],
|
|
|
|
+ "predictPowerColumn": predict,
|
|
|
|
+ "inStalledCapacityName": config['inStalledCapacityName'],
|
|
"computTypeEnum": "E2",
|
|
"computTypeEnum": "E2",
|
|
- "computMeasEnum": "E2",
|
|
|
|
- "openCapacityName": 153,
|
|
|
|
- "onGridEnergy": 0,
|
|
|
|
- "price": 0,
|
|
|
|
- "fault": -99,
|
|
|
|
- "colTime": "dateTime", #时间列名(可选,要与上面'dateTime一致')
|
|
|
|
|
|
+ "computMeasEnum": config.get('computMeasEnum', 'E2'),
|
|
|
|
+ "openCapacityName": config['openCapacityName'],
|
|
|
|
+ "onGridEnergy": config.get('onGridEnergy', 1),
|
|
|
|
+ "price": config.get('price', 1),
|
|
|
|
+ "fault": config.get('fault', -99),
|
|
|
|
+ "colTime": config['col_time'], #时间列名(可选,要与上面'dateTime一致')
|
|
# "computPowersEnum": "E4" # 计算功率类型(可选)
|
|
# "computPowersEnum": "E4" # 计算功率类型(可选)
|
|
"data": data # MongoDB数据
|
|
"data": data # MongoDB数据
|
|
}
|
|
}
|
|
@@ -132,32 +213,35 @@ def calculate_acc(api_url, request_body):
|
|
if response.status_code == 200:
|
|
if response.status_code == 200:
|
|
acc = np.average([res['accuracy'] for res in result])
|
|
acc = np.average([res['accuracy'] for res in result])
|
|
# ass = np.average([res['accuracyAssessment'] for res in result])
|
|
# ass = np.average([res['accuracyAssessment'] for res in result])
|
|
- print("111111111")
|
|
|
|
return acc, 0
|
|
return acc, 0
|
|
else:
|
|
else:
|
|
- logger.info(f"失败:{result['status']},{result['error']}")
|
|
|
|
- print(f"失败:{result['status']},{result['error']}")
|
|
|
|
- print("22222222")
|
|
|
|
|
|
+ logger.info(f"{response.status_code}失败:{result['status']},{result['error']}")
|
|
except requests.exceptions.RequestException as e:
|
|
except requests.exceptions.RequestException as e:
|
|
- print(f"API调用失败: {e}")
|
|
|
|
- print("333333333")
|
|
|
|
|
|
+ logger.info(f"准确率接口调用失败: {e}")
|
|
return None
|
|
return None
|
|
|
|
|
|
-def history_error(data, col_power, col_pre):
|
|
|
|
|
|
+def history_error(data, col_power, col_pre, his_window):
|
|
data['error'] = data[col_power] - data[col_pre]
|
|
data['error'] = data[col_power] - data[col_pre]
|
|
data['error'] = data['error'].round(2)
|
|
data['error'] = data['error'].round(2)
|
|
data.reset_index(drop=True, inplace=True)
|
|
data.reset_index(drop=True, inplace=True)
|
|
# 用前面5个点的平均error,和象心力相加
|
|
# 用前面5个点的平均error,和象心力相加
|
|
- numbers = len(data) - 5
|
|
|
|
- datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)]
|
|
|
|
- data_error = [np.mean(d.iloc[0:5, -1]) for d in datas]
|
|
|
|
- pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0)
|
|
|
|
|
|
+ numbers = len(data) - his_window
|
|
|
|
+ datas = [data.iloc[x: x+his_window, :].reset_index(drop=True) for x in range(0, numbers)]
|
|
|
|
+ data_error = [np.mean(d.iloc[0:his_window, -1]) for d in datas]
|
|
|
|
+ pad_data_error = np.pad(data_error, (his_window, 0), mode='constant', constant_values=0)
|
|
data['his_fix'] = data[col_pre] + pad_data_error
|
|
data['his_fix'] = data[col_pre] + pad_data_error
|
|
- data = data.iloc[5:, :].reset_index(drop=True)
|
|
|
|
- data.loc[data[col_pre] <= 0, ['his_fix']] = 0
|
|
|
|
- data['dateTime'] = pd.to_datetime(data['dateTime'])
|
|
|
|
- data = data.loc[:, ['dateTime', col_power, col_pre, 'his_fix']]
|
|
|
|
- # data.to_csv('J01080原始数据.csv', index=False)
|
|
|
|
|
|
+ data = data.iloc[his_window:, :].reset_index(drop=True)
|
|
|
|
+ return data
|
|
|
|
+
|
|
|
|
+def curve_limited(pre_data, config, predict):
|
|
|
|
+ """
|
|
|
|
+ plant_type: 0 风 1 光
|
|
|
|
+ """
|
|
|
|
+ data = pre_data.copy()
|
|
|
|
+ col_time, cap = config['col_time'], float(config['openCapacityName'])
|
|
|
|
+ data[col_time] = pd.to_datetime(data[col_time])
|
|
|
|
+ data.loc[data[predict] < 0, [predict]] = 0
|
|
|
|
+ data.loc[data[predict] > cap, [predict]] = cap
|
|
return data
|
|
return data
|
|
|
|
|
|
@app.route('/cdq_coe_gen', methods=['POST'])
|
|
@app.route('/cdq_coe_gen', methods=['POST'])
|
|
@@ -171,10 +255,10 @@ def get_station_cdq_coe():
|
|
try:
|
|
try:
|
|
args = request.values.to_dict()
|
|
args = request.values.to_dict()
|
|
logger.info(args)
|
|
logger.info(args)
|
|
- data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
|
|
|
|
- pre_data = history_error(data, col_power='realPower', col_pre='dq')
|
|
|
|
|
|
+ data = get_data_from_mongo(args).sort_values(by=args['col_time'], ascending=True)
|
|
for point in range(0, 16, 1):
|
|
for point in range(0, 16, 1):
|
|
- iterate_coe(pre_data, point, 'realPower', 'dq', coe)
|
|
|
|
|
|
+ iterate_his_coe(data, point, args, coe)
|
|
|
|
+ iterate_coe(data, point, args, coe)
|
|
success = 1
|
|
success = 1
|
|
except Exception as e:
|
|
except Exception as e:
|
|
my_exception = traceback.format_exc()
|
|
my_exception = traceback.format_exc()
|
|
@@ -203,11 +287,8 @@ if __name__ == "__main__":
|
|
# run_code = 0
|
|
# run_code = 0
|
|
print("Program starts execution!")
|
|
print("Program starts execution!")
|
|
from waitress import serve
|
|
from waitress import serve
|
|
-
|
|
|
|
- serve(
|
|
|
|
- app,
|
|
|
|
- host="0.0.0.0",
|
|
|
|
- port=10123,
|
|
|
|
- threads=8, # 指定线程数(默认4,根据硬件调整)
|
|
|
|
- channel_timeout=600 # 连接超时时间(秒)
|
|
|
|
- )
|
|
|
|
|
|
+ serve(app, host="0.0.0.0", port=10123,
|
|
|
|
+ threads=8, # 指定线程数(默认4,根据硬件调整)
|
|
|
|
+ channel_timeout=600 # 连接超时时间(秒)
|
|
|
|
+ )
|
|
|
|
+ print("server start!")
|