|
@@ -12,6 +12,8 @@ import logging, argparse
|
|
|
from data_processing.data_operation.data_handler import DataHandler
|
|
|
import time, yaml
|
|
|
from models_processing.model_koi.tf_lstm import TSHandler
|
|
|
+from models_processing.model_koi.tf_cnn import CNNHandler
|
|
|
+
|
|
|
from common.database_dml import *
|
|
|
import matplotlib.pyplot as plt
|
|
|
from common.logs import Log
|
|
@@ -23,30 +25,44 @@ app = Flask('tf_lstm_train——service')
|
|
|
|
|
|
with app.app_context():
|
|
|
with open('../model_koi/lstm.yaml', 'r', encoding='utf-8') as f:
|
|
|
- arguments = yaml.safe_load(f)
|
|
|
+ args = yaml.safe_load(f)
|
|
|
+
|
|
|
+ dh = DataHandler(logger, args)
|
|
|
+ ts = TSHandler(logger, args)
|
|
|
+ # ts = CNNHandler(logger, args)
|
|
|
+ global opt
|
|
|
|
|
|
- dh = DataHandler(logger, arguments)
|
|
|
- ts = TSHandler(logger)
|
|
|
+@app.before_request
|
|
|
+def update_config():
|
|
|
+ # ------------ 整理参数,整合请求参数 ------------
|
|
|
+ args_dict = request.values.to_dict()
|
|
|
+ args_dict['features'] = args_dict['features'].split(',')
|
|
|
+ args.update(args_dict)
|
|
|
+ opt = argparse.Namespace(**args)
|
|
|
+ dh.opt = opt
|
|
|
+ ts.opt = opt
|
|
|
+ logger.info(args)
|
|
|
|
|
|
-@app.route('/nn_bp_training', methods=['POST'])
|
|
|
+@app.route('/nn_lstm_training', methods=['POST'])
|
|
|
def model_training_bp():
|
|
|
# 获取程序开始时间
|
|
|
start_time = time.time()
|
|
|
result = {}
|
|
|
success = 0
|
|
|
print("Program starts execution!")
|
|
|
- args_dict = request.values.to_dict()
|
|
|
- args = arguments.deepcopy()
|
|
|
- args.update(args_dict)
|
|
|
try:
|
|
|
- opt = argparse.Namespace(**args)
|
|
|
- logger.info(args_dict)
|
|
|
- train_data = get_data_from_mongo(args_dict)
|
|
|
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
|
|
|
- bp_model = ts.training(opt, [train_x, valid_x, train_y, valid_y])
|
|
|
- args_dict['params'] = json.dumps(args)
|
|
|
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
- insert_trained_model_into_mongo(bp_model, args_dict)
|
|
|
+ # ------------ 获取数据,预处理训练数据 ------------
|
|
|
+ train_data = get_data_from_mongo(args)
|
|
|
+ train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
|
|
|
+ # ------------ 训练模型,保存模型 ------------
|
|
|
+ ts.opt.Model['input_size'] = train_x.shape[2]
|
|
|
+ ts_model = ts.training([train_x, valid_x, train_y, valid_y])
|
|
|
+
|
|
|
+ args['params'] = json.dumps(args)
|
|
|
+ args['descr'] = '测试'
|
|
|
+ args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
+
|
|
|
+ insert_trained_model_into_mongo(ts_model, args)
|
|
|
insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
|
|
|
success = 1
|
|
|
except Exception as e:
|
|
@@ -69,23 +85,23 @@ if __name__ == "__main__":
|
|
|
logger = logging.getLogger("model_training_bp log")
|
|
|
from waitress import serve
|
|
|
|
|
|
- # serve(app, host="0.0.0.0", port=10103, threads=4)
|
|
|
+ serve(app, host="0.0.0.0", port=10103, threads=4)
|
|
|
print("server start!")
|
|
|
- args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
- 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
|
|
|
- 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
- args_dict['features'] = args_dict['features'].split(',')
|
|
|
- arguments.update(args_dict)
|
|
|
- dh = DataHandler(logger, arguments)
|
|
|
- ts = TSHandler(logger)
|
|
|
- opt = argparse.Namespace(**arguments)
|
|
|
- opt.Model['input_size'] = len(opt.features)
|
|
|
- train_data = get_data_from_mongo(args_dict)
|
|
|
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
|
|
|
- ts_model = ts.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
-
|
|
|
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
- args_dict['params'] = arguments
|
|
|
- args_dict['descr'] = '测试'
|
|
|
- insert_trained_model_into_mongo(ts_model, args_dict)
|
|
|
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|
|
|
+ # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
+ # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
|
|
|
+ # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
+ # args_dict['features'] = args_dict['features'].split(',')
|
|
|
+ # arguments.update(args_dict)
|
|
|
+ # dh = DataHandler(logger, arguments)
|
|
|
+ # ts = TSHandler(logger)
|
|
|
+ # opt = argparse.Namespace(**arguments)
|
|
|
+ # opt.Model['input_size'] = len(opt.features)
|
|
|
+ # train_data = get_data_from_mongo(args_dict)
|
|
|
+ # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
|
|
|
+ # ts_model = ts.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
+ #
|
|
|
+ # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
+ # args_dict['params'] = arguments
|
|
|
+ # args_dict['descr'] = '测试'
|
|
|
+ # insert_trained_model_into_mongo(ts_model, args_dict)
|
|
|
+ # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|