|
@@ -37,7 +37,7 @@ class TSHandler(object):
|
|
|
self.logger.info("加载模型权重失败:{}".format(e.args))
|
|
|
|
|
|
@staticmethod
|
|
|
- def get_keras_model(opt, time_series=1, lstm_type=1):
|
|
|
+ def get_keras_model_20250514(opt, time_series=1, lstm_type=1):
|
|
|
loss = region_loss(opt)
|
|
|
l1_reg = regularizers.l1(opt.Model['lambda_value_1'])
|
|
|
l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
|
|
@@ -56,6 +56,28 @@ class TSHandler(object):
|
|
|
model.compile(loss=loss, optimizer=adam)
|
|
|
return model
|
|
|
|
|
|
+ @staticmethod
|
|
|
+ def get_keras_model(opt, time_series=1, lstm_type=1):
|
|
|
+ loss = region_loss(opt)
|
|
|
+ l1_reg = regularizers.l1(opt.Model['lambda_value_1'])
|
|
|
+ l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
|
|
|
+ nwp_input = Input(shape=(opt.Model['time_step'] * time_series, opt.Model['input_size']), name='nwp')
|
|
|
+
|
|
|
+ con1 = Conv1D(filters=64, kernel_size=1, strides=1, padding='valid', activation='relu',
|
|
|
+ kernel_regularizer=l2_reg)(nwp_input)
|
|
|
+ con1_p = MaxPooling1D(pool_size=1, strides=1, padding='valid', data_format='channels_last')(con1)
|
|
|
+ nwp_lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=False, kernel_regularizer=l2_reg)(con1_p)
|
|
|
+ if lstm_type == 2:
|
|
|
+ output = Dense(opt.Model['time_step'], name='cdq_output')(nwp_lstm)
|
|
|
+ else:
|
|
|
+ output = Dense(opt.Model['time_step'] * time_series, name='cdq_output')(nwp_lstm)
|
|
|
+
|
|
|
+ model = Model(nwp_input, output)
|
|
|
+ adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
|
|
|
+ model.compile(loss=loss, optimizer=adam)
|
|
|
+
|
|
|
+ return model
|
|
|
+
|
|
|
def train_init(self):
|
|
|
try:
|
|
|
# 进行加强训练,支持修模
|