|
@@ -31,6 +31,7 @@ def update_config():
|
|
|
request_args = request.values.to_dict()
|
|
|
# features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
|
|
|
request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
|
|
|
+ request_args['time_series'] = request_args.get('time_series', 1)
|
|
|
current_config.update(request_args)
|
|
|
|
|
|
# 存储到请求上下文
|
|
@@ -52,24 +53,24 @@ def model_training_bp():
|
|
|
try:
|
|
|
# ------------ 获取数据,预处理训练数据 ------------
|
|
|
train_data = get_data_from_mongo(args)
|
|
|
- train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
|
|
|
+ train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'])
|
|
|
ts.opt.cap = round(scaled_cap, 2)
|
|
|
ts.opt.Model['input_size'] = len(dh.opt.features)
|
|
|
# ------------ 训练模型,保存模型 ------------
|
|
|
# 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
|
|
|
# 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
|
|
|
- model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
|
|
|
+ model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt, time_series=args['time_series'])
|
|
|
if ts.opt.Model['add_train']:
|
|
|
if model:
|
|
|
feas = json.loads(ts.model_params)['features']
|
|
|
if set(feas).issubset(set(dh.opt.features)):
|
|
|
dh.opt.features = list(feas)
|
|
|
- train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
|
|
|
+ train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'])
|
|
|
else:
|
|
|
- model = ts.get_keras_model(ts.opt)
|
|
|
+ model = ts.get_keras_model(ts.opt, time_series=args['time_series'])
|
|
|
logger.info("训练数据特征,不满足,加强训练模型特征")
|
|
|
else:
|
|
|
- model = ts.get_keras_model(ts.opt)
|
|
|
+ model = ts.get_keras_model(ts.opt, time_series=args['time_series'])
|
|
|
ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
|
|
|
args['Model']['features'] = ','.join(dh.opt.features)
|
|
|
args['params'] = json.dumps(args)
|