|
@@ -33,8 +33,8 @@ class DataHandler(object):
|
|
|
train_y.extend(ty)
|
|
|
valid_y.extend(vy)
|
|
|
|
|
|
- train_y = np.concatenate([[y.iloc[:, 1].values for y in train_y]], axis=0)
|
|
|
- valid_y = np.concatenate([[y.iloc[:, 1].values for y in valid_y]], axis=0)
|
|
|
+ train_y = np.array([[y.iloc[:, 1].values for y in train_y]])
|
|
|
+ valid_y = np.array([[y.iloc[:, 1].values for y in valid_y]])
|
|
|
|
|
|
train_x = np.array([x.values for x in train_x])
|
|
|
valid_x = np.array([x.values for x in valid_x])
|
|
@@ -48,8 +48,8 @@ class DataHandler(object):
|
|
|
self.logger.info("特征处理-预测数据-不满足time_step")
|
|
|
continue
|
|
|
datax = self.get_predict_features(df, features)
|
|
|
- test_x.extend(datax)
|
|
|
- test_x = np.array(test_x)
|
|
|
+ test_x.append(datax)
|
|
|
+ test_x = np.concatenate(test_x, axis=0)
|
|
|
return test_x
|
|
|
|
|
|
def get_predict_features(self, norm_data, features):
|
|
@@ -226,11 +226,12 @@ class DataHandler(object):
|
|
|
# features, time_steps, col_time, model_name, col_reserve = str_to_list(args['features']), int(
|
|
|
# args['time_steps']), args['col_time'], args['model_name'], str_to_list(args['col_reserve'])
|
|
|
col_time, features = self.opt.col_time, self.opt.features
|
|
|
- pre_data = data.sort_values(by=col_time)[features]
|
|
|
- scaled_features = feature_scaler.transform(pre_data[features])
|
|
|
+ data = data.sort_values(by=col_time).reset_index(drop=True, inplace=False)
|
|
|
+ pre_data = data[features]
|
|
|
+ scaled_features = feature_scaler.transform(data[features])
|
|
|
pre_data[features] = scaled_features
|
|
|
if bp_data:
|
|
|
pre_x = np.array(pre_data)
|
|
|
else:
|
|
|
pre_x = self.get_predict_data([pre_data], features)
|
|
|
- return pre_x
|
|
|
+ return pre_x, data
|