|
@@ -23,7 +23,7 @@ def create_sequences(data_features,data_target,time_steps):
|
|
|
|
|
|
|
|
|
def model_prediction(df,args):
|
|
|
- features, time_steps, col_time = str_to_list(args['features']), int(args['time_steps']),args['col_time']
|
|
|
+ features, time_steps, col_time, model_name = str_to_list(args['features']), int(args['time_steps']),args['col_time'],args['model_name']
|
|
|
feature_scaler,target_scaler = get_scaler_model_from_mongo(args)
|
|
|
df = df.fillna(method='ffill').fillna(method='bfill').sort_values(by=col_time)
|
|
|
scaled_features = feature_scaler.transform(df[features])
|
|
@@ -34,6 +34,7 @@ def model_prediction(df,args):
|
|
|
y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(X_predict).flatten()])))
|
|
|
result = df[-len(y_predict):]
|
|
|
result['predict'] = y_predict
|
|
|
+ result['model'] = model_name
|
|
|
return result
|
|
|
|
|
|
def str_to_list(arg):
|