|
@@ -56,18 +56,19 @@ def model_prediction_bp():
|
|
|
scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
|
|
|
ts.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
|
|
|
ts.get_model(args)
|
|
|
- # result = bp.predict(scaled_pre_x, args)
|
|
|
res = list(chain.from_iterable(target_scaler.inverse_transform(ts.predict(scaled_pre_x))))
|
|
|
- pre_data['power_forecast'] = res[:len(pre_data)]
|
|
|
pre_data['farm_id'] = args.get('farm_id', 'null')
|
|
|
if args.get('algorithm_test', 0):
|
|
|
- pre_data['model'] = 'lstm'
|
|
|
+ pre_data[args['model_name']] = res[:len(pre_data)]
|
|
|
pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
|
|
|
+ pre_data = pre_data[['dateTime', 'farm_id', args['target'], args['model_name'], 'dq']]
|
|
|
+ pre_data = pre_data.melt(id_vars=['dateTime', 'farm_id', args['target']], var_name='model', value_name='power_forecast')
|
|
|
res_cols = ['dateTime', 'power_forecast', 'farm_id', args['target'], 'model']
|
|
|
else:
|
|
|
pre_data['cdq'] = args.get('cdq', 1)
|
|
|
pre_data['dq'] = args.get('dq', 1)
|
|
|
pre_data['zq'] = args.get('zq', 1)
|
|
|
+ pre_data['power_forecast'] = res[:len(pre_data)]
|
|
|
pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
|
|
|
res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
|
|
|
pre_data = pre_data[res_cols]
|