|
@@ -37,23 +37,26 @@ def model_training_bp():
|
|
success = 0
|
|
success = 0
|
|
print("Program starts execution!")
|
|
print("Program starts execution!")
|
|
args_dict = request.values.to_dict()
|
|
args_dict = request.values.to_dict()
|
|
- args = arguments.deepcopy()
|
|
|
|
|
|
+ args_dict['features'] = args_dict['features'].split(',')
|
|
|
|
+ args = copy.deepcopy(arguments)
|
|
args.update(args_dict)
|
|
args.update(args_dict)
|
|
- try:
|
|
|
|
- opt = argparse.Namespace(**args)
|
|
|
|
- logger.info(args_dict)
|
|
|
|
- train_data = get_data_from_mongo(args_dict)
|
|
|
|
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
|
|
|
|
- bp_model = bp.training(opt, [train_x, valid_x, train_y, valid_y])
|
|
|
|
- args_dict['params'] = json.dumps(args)
|
|
|
|
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
|
- insert_trained_model_into_mongo(bp_model, args_dict)
|
|
|
|
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
|
|
|
|
- success = 1
|
|
|
|
- except Exception as e:
|
|
|
|
- my_exception = traceback.format_exc()
|
|
|
|
- my_exception.replace("\n", "\t")
|
|
|
|
- result['msg'] = my_exception
|
|
|
|
|
|
+ # try:
|
|
|
|
+ opt = argparse.Namespace(**args)
|
|
|
|
+ logger.info(args_dict)
|
|
|
|
+ train_data = get_data_from_mongo(args_dict)
|
|
|
|
+ train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
|
|
|
|
+ opt.Model['input_size'] = train_x.shape[1]
|
|
|
|
+ bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
|
+ args_dict['params'] = json.dumps(args)
|
|
|
|
+ args_dict['descr'] = '测试'
|
|
|
|
+ args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
|
+ insert_trained_model_into_mongo(bp_model, args_dict)
|
|
|
|
+ insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
|
|
|
|
+ success = 1
|
|
|
|
+ # except Exception as e:
|
|
|
|
+ # my_exception = traceback.format_exc()
|
|
|
|
+ # my_exception.replace("\n", "\t")
|
|
|
|
+ # result['msg'] = my_exception
|
|
end_time = time.time()
|
|
end_time = time.time()
|
|
|
|
|
|
result['success'] = success
|
|
result['success'] = success
|
|
@@ -70,23 +73,23 @@ if __name__ == "__main__":
|
|
logger = logging.getLogger("model_training_bp log")
|
|
logger = logging.getLogger("model_training_bp log")
|
|
from waitress import serve
|
|
from waitress import serve
|
|
|
|
|
|
- # serve(app, host="0.0.0.0", port=10103, threads=4)
|
|
|
|
- print("server start!")
|
|
|
|
- args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
|
- 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
|
|
|
|
- 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
|
- args_dict['features'] = args_dict['features'].split(',')
|
|
|
|
- arguments.update(args_dict)
|
|
|
|
- dh = DataHandler(logger, arguments)
|
|
|
|
- bp = BPHandler(logger)
|
|
|
|
- opt = argparse.Namespace(**arguments)
|
|
|
|
- opt.Model['input_size'] = len(opt.features)
|
|
|
|
- train_data = get_data_from_mongo(args_dict)
|
|
|
|
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
|
|
|
|
- bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
|
-
|
|
|
|
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
|
- args_dict['params'] = arguments
|
|
|
|
- args_dict['descr'] = '测试'
|
|
|
|
- insert_trained_model_into_mongo(bp_model, args_dict)
|
|
|
|
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|
|
|
|
|
|
+ serve(app, host="0.0.0.0", port=10103, threads=4)
|
|
|
|
+ # print("server start!")
|
|
|
|
+ # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
|
|
|
|
+ # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
|
|
|
|
+ # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
|
|
|
|
+ # args_dict['features'] = args_dict['features'].split(',')
|
|
|
|
+ # arguments.update(args_dict)
|
|
|
|
+ # dh = DataHandler(logger, arguments)
|
|
|
|
+ # bp = BPHandler(logger)
|
|
|
|
+ # opt = argparse.Namespace(**arguments)
|
|
|
|
+ # opt.Model['input_size'] = len(opt.features)
|
|
|
|
+ # train_data = get_data_from_mongo(args_dict)
|
|
|
|
+ # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
|
|
|
|
+ # bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
|
|
|
|
+ #
|
|
|
|
+ # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
|
|
|
+ # args_dict['params'] = arguments
|
|
|
|
+ # args_dict['descr'] = '测试'
|
|
|
|
+ # insert_trained_model_into_mongo(bp_model, args_dict)
|
|
|
|
+ # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|